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Foreword

Many hundreds of books have been written about thabls—
tory of mathematics and the people to whom the development
of this great branch of human knowledge is due, whale ‘untold
thousands of weighty tomes offer us the results of their labors.

Nevertheless, it seems to me there is need foramodest little

volume that offers the story of those who lm‘d the foundations .

of modern mathematics and which, at the same time, explains
as 31mp1y as possible the ovtstanding landmarks and details of
the various mathematical concepts2nd processes developed by
them, concepts and processes which are, in the main, based on
surprisingly familiar, everyday ideas.

Since this story gra.duaﬂy develops during some eight mil-
lennia, side by side mt‘h?the development of thinking man, we
shall, from time to time, take our eye off the mathematical
road on which we,shall be traveling together, in order to get
our bearings 1{1}:]18 wider story of mankind.

For many-generations, mathematics “The Queen of the
Sciences’, 'was a’ much-maligned lady. It was tacitly under-
stood that she reserved her favors exclusively for the select few
m‘had the good fortune to be endowed with a peculiar mental
kink that enabled them to penetrate the esoteric halls in which
this most attractive lady resided (for such was the description
of her dwelling place sedulously spread abroad by the fortunate
few who were lucky enough to have found the key).
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During the past few years, however, a great deal of this
myth has been exploded. There is little in mathematics—
at least until you are well into the differential calculus—that
cannot be grasped and enjoyed by anyone of normal intelli-
gence who knows how to add, subtract, multiply and divide
simple numbers. ™\

I have assumed that some of my readers will have no~g\reater
mathematical background than this. Therefore,, those who
have penetrated further into the subject must please forgive
certain explanations which to them will be umlecessary

It is hoped that students and teachers may find sorme value
and inspiration in the historical bacRgrotnd that has been
woven into the story of mathematits’and mathematicians,
and that such inspiration will be’hﬁnﬁed on by them to others,
and especially to those of school‘agé.

It is high time that the dr'y-é,s dust notion so often associ-
ated with mathematics was swept away and the student intro-
duced to the fascinatidténot only of the story of mathematics
and. mathematiciafi, but also of the actual mathematical
processes themxh\fe:s.

N\

1 must,_&xpress my gratitude and indebtedness to ail those
who knowingly or unknowingly have assisted me in writing
this’book: to the many librarians whose apparently inex-

fustible patience and cheerful help still arouses my surprise
\and admiration after five years residence in the United States;
“to Professor D. E. Richmond for reading the manuscript and
off.ermg many helpful suggestions; to my editor, Saxe Com-
mins, for doing his arduous job in such a way that working
with hlm becomes a real pleasure; to Mrs. David E. Smith for
her kindness in permitting me to make use of certain illustra-
tions and material in Dr. D. E. Smith’s Hi istory of Mathe-
#matics; to the authors and publishers who have been good
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enough to permit me to make use of certain illustrations and
material in their books; to the countless unmentioned books
to which I am unconsciously indebted for the background of
the history of mathematics. Such of these bocks as seem to me
most likely to interest the general reader or to be of value to
the student of mathematics are mentioned in the bibliography. Q
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CHAPTER 1
The Birth of Numbers

O\
A\

5 CHILDREN, we accepted without question most.of “the

things we were taught; familiarity, later, madg,us ‘take

them for granted, and most of us have taken them}o} granted

ever since. This is true of many mathematical ediicepts. Conse-

quently, few of us realize the surprising simplicity of the ideas

from which most of them sprang. The objeet of this book is to

point out this simplicity, and by traéng the development of

one idea from another, to remove some of the mystery that the
average man so often associates with mathematics.

To be on the safe side, the author has assumed that many of
his readers will have nomQal working knowledge of geometry,
algebra, trigonometry; apalytic geometry and the calculus. He
is convinced that by&lowing the story of the development of
these branches of-mathematics from the simple ideas from
which they a 0}2.8, any person of normal intelligence can under-
stand the basic thought-processes that lie behind them, and
reaﬁzqkﬁsésibly for the first time, that behind numbers and
symbols lies a story of absorbing human interest.
o"sj;?:t'us commence at the very beginning and think of some

# the concepts we met when we made our first acquaintance
with mathematics by learning to count in the way our elders
counied.

Before we learned how much quicker and easier it is to
“work in our heads,”” many of us made use of our ten fingers
when we had to count or add numbers. Perhaps we imagined—

3
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4 MAKERS OF MATHEMATICS

if we thought about it at all—that it was just a lucky chance
that the number of our fingers seemed to fit in so nicely with
the numbers with which we had to deal. How many of us
realize that it was not chance at all, but that the vast edifice of
modern mathematics is based on a number-scale—some deny

~ it is the best possible number-scale—which arose irom thedact

that Nature decreed that man should have ten fingers?

When primitive man, by learning to count up to j:\eha Pproved
that he was in some strange way different from alithe rest of
animal creation, he invented only ten numBerssounds. The
reason was that he counted in the way a small’child counts to-
day, one by one, making use of his fingets; Since those primeval
days, only five other basic number-sounids have been invented.
The needs and possessions of primitive man were few: he re-
quired no large numbers, Whenhe'wished to exprese a number
greater than ten he simply contbined certain of the ten sounds
connected with his fingers. Thus, if he wished to express “one
more than ten” he saig@**‘one-ten,” (compare the Latin un-
decim), hence our yotd “eleven,” which is simply a modern
form of the Teutonle ein-lifon, “one over.” Similarly, “twelve”
is a modern forrof fwe-lif, “two-over,” and to the Romans was
simply dubndetim “two ten.” Our “twenty” is fwe-tig, “two-
tens,” ¢hirty” is thri-tig, “three tens,” and so on. The only
basic number-sounds in addition to the ten primary ones are
(ktdred,” “thousand,” “million,” “billion” (a thousand mil-

Qlbons in America, a million millions in England), “trillion” (5
-+ million millions in America, a million-million millions in Eng-

land). .
Just because primitive man invented the same number of
number-sounds as he had fingers, our number-scale today is a
decimal one, that is, a scale based on len, and consisting of end-
less repetitions of the first ten basic number-sounds,
Had men been given twelve fingers instead of ten, we should
doubtless have a duo-decimal number-scale today, one based
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on twelve, consisting of endless repetitions of twelve basic
number-sounds. Assuming that the sounds “cleven” and
sywelve” had been chosen for the two extra fingers, we should
now say “one-twelve” instead of thirteen (three-ten); “two-
swelve” instead of fourteen; “eight-twelve” instead of twenty,
and so on. Instead of twenty-four we should have a word some-
thing like “twe-twelves” (two-twelves), and twenty-five would

then be “twe-twelves-one,” and so on. A duodecimal system™,

like this would hold certain distinct advantages over a decimal
system such as ours, since- twelve can be divided exagctly-by
two, three, four and six, whereas ten can only be exactly di-
vided by two and five. However, it is now tco lagesto do any-
thing about it. Nature gave man. ten fingers, angl our mathe-
matical system is irrevocably tied to a decz'mi:r&\number—scale n
consequence. ' O

We must not imagine that primitiveiian ever conceived of a
number-scale. To him a number wdg'iot an abstract concept, .
as it is to us. It had merely a deSCtiptive or adjectival use, as
“four fish,” “nine men.” ’l:he:ééncept of a number-scale con-
sisting of “things” calleddiuibers, commencing with zero and
with no upper limit,grew slowly in men’s minds.

Some early races;\hcluding the highly civilized Mayas in
South America,bgsed their number system on twenty instead
of ten. Possibiythis was because those who first built up such
a systenK dde use of their toes as well as their fingers when
countings"

Ieng before the invention of writing, primitive man had de-
vised a method of recording numbers. We have seen that he
eéunted on his fingers. Now, a fimger can easily be represented
by a single cut or stroke. It was natural, therefore, that our
remote ancestors should have made such marks on the walls of
their caves or on pieces of stone when they wished to keep a
record or tally of a number of objects. Each mark or cut would
stand for one object. It would not be possible to see at a glance

Q!



6 MAKERS OF MATHEMATICS

the total number represented by a coliection of these strokes;
the only way to find their total would be to count them one by
one, Many ancient cave dwellings show such markings, the
earliest attempts made by men to represent spoken numbers by
written symbols. Such number-writings go back before even
those far-off days when men made the tremendous dismvsry
that the seeds of certain kinds of grass were good to eatyand
forthwith started agriculture. This simple yet clumsylmethod
of recording numbers continued {for many thousqnd% of years,
and even today it is still encountered among some backward
tribes, ' ¢

As eivilization developed, many differ€nt ways of writing
numbers were invented. T.ong before\the Babylonians had
conquered the Jews, as recorded inthe Old Testament, they
had invented a system of numbgg-symbols which were wedge-~
shaped, v <, since they were.,rﬁa.'de by pressing a rod with a
pointed end into a clay tablet."The Latin word for a wedge was
cuneus. So these wedgesshaped characters are known as
“cuneiform” writing, The clay tablet on which they were writ-
ten would afterwatds be baked in the sun or in a kiln, so that it
hardened int%a\‘ki‘nd of brick,

Early indthe sixteenth century the Spaniards found their
way fropg'ihe West Indies to the mainland of America. They
were amazed to discover more than sixty ruined cities in the

istriet we call Yucatan, now part of Mexico. There were
duined temples, palaces and great underground reservoirs,
lined with blocks of stone. They had been built by the Maya
people, who had developed a civilization of which the in-
habitants of Europe had known nothing. This was the race we
mentioned as using a number-scale which had twenty basic
pumber-sounds instead of ten. Carved on some of their monu-
ments have been found twenty number-symbols, made up
chiefly of dots and dashes. They even had a symbol for zero,
which suggests that they must have had some kind of abacus,
or counting frame, for, as we shall see, the work done by the
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symbol 0 is to indicate that there are no counters or beads on
that particular wire or line of the counting frame.

Both the Hebrews and the Greeks used the letters of their -

alphabets to represent numbers, the Greek system being based
on that of the Hebrews, Just to give an idea of how.the Greek
system worked we will choose four Greek number-symbols that
can easily be recognized by every reader, since they are very,

much like our letters a, b, i and k. (\N

a (alpha) always steod for one;

B (beta)} always stood for fwo; N

. (iota) always stood for fem; (&

x (kappa) always stood for twenly,)

Now, while ¢ (“ten and two”) would represent 12, these
symbols could not be interchanged as our Qﬁodem symbols for
12 can be interchanged to form 21. Toaepresent 21, the sym-
bols ke would have to be employed. In ¢ther words, the Greeks,
despite all their brilliant intellecti;al' achievernents, never hit
on the beautiful simplicity gi}lémploying only ten number-
symbols and thinking of them as representing counters on a
counting frame, there‘r{}( Dringing in the concept of one and the
same numbcr-symb@{\r’épresenting entircly different values,
according to its pg¥ition with regard to other number-symbols
written alongsidel
Not having hit on this simple idea of positional values, the

Greeks | @ to use all twenty-four letters of their alphabet, and
threc t}thcr symbols in addition to these, even to represent
smalPnumbers. It is easy to be wise after the event, but now
‘that we have our simple positional concept which requires only
ten symbols to represent any number, no matter how large,
onc cannot help marveling that the great Greek mathemati-
cians whose genius produced the wonderful “Golden Age of
Greek Mathematics,” which we shall discuss later, should not
have devised a less complicated and cumbersome method of
writing numbers. Of course, it just never occurred to them that
any simpler system of writing numbers was possible. Before we

Q!



& MAKERS OF MATHEMATICS

criticize the Greeks for putting up with a clumsy system like
this, let us remember that we are still putting up with in-
credibly clumsy and complicated medieval weights and meas-
ures, even though we have a beautiful time- and labor-saving
metric system merely waiting to be adopted.

The Roman system, known as Roman numerals, contained
the germ of the idea of positional value, but only te a’very
limited extent. Nobody knows for certain how thése® Roman
numerals arose. 1t is thought that they were probably based
on the cave-man’s finger writing. This view, has the support
of Dr, Mommsen, who was one of the greatést authorities on
Roman times and it is further supported by the fact that the
Latin word for “finger”” was digitusyphich word was also used
by the Romans to describe in & g‘&ncral way any one of their
number-symbols, just as we ugd the word “digit” today.

The Romans onglnally W;rote the numbers one to four as

1 ® ,~1I It I

\ <

~G
\The symbol for fivre was a V-shaped mark which may well

N % have represented the gap between thumb and fingers, thus:

v

[



THE BIRTH OF NUMBERS o

It was in connection with this symbol that the germ of the
all-important idea of positional value arose. To avoid the
clumsy TIII for four, it became customary to put the symbol I
on the left of the symbol V. This same idea was applied to other
symbols, it being understood that whenever a symbol was
written on the left of a symbol of higher value, the number
represented was equal to the difference between the two sym-
bols.”

On the other hand, whenever a symbol was wriiten on thg’

right of a symbol of higher value, the number represented was
understood to be equal to the sum of these two symbols. Un-
doubtedly this concept arose from the primitive wa¥ ‘of indi-
cating the numbers six, seven, eight, and, originally, nine,
using the fingers of both hands, thus:

VII

"R ~

»C YFic. 3
A\

Nine was origiqal}if written VIITT, but this was later simpli-
fied by writing #he’symbol I on the leff of the symbol for fen.
This symbolwas X, which may have been suggested by crossed
hands, o‘r%os'sed thumbs, or may have stood for strokes made
acrosgefen of the strokes which represented one each, Such
aﬁrgiéﬁlbd enables anyone to see more rapidly the number of
strokes he has made. Thus:

[T

Fic. 4

/
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I0 MAKERS OF MATHEMATICS

represents “thirteen,” which the Romans wrote as XTII.

Since X stood for ten, IX came to stand for nine, the dif-
ference between the values represented by X and I. Thus the
first ten Roman numerals came to be, and still are

I IT III IV V VI VI VIO IX X
Q"

We have secn that the primitive number-scale, on, which
the whole great edifice of modern mathematics is baséd, con-
‘sists only of endless repetitions of the ten primary number-
sounds. This concept is clearly reflected in thé\way in which
Roman numerals were built up, the numbei‘s"eleven to fwenty
being represented by placing one or othér'of the primary ten
symbols to the right of the symbol forten; thus: X1, X17, XTI11,
XIV, and so on. Those from twenty $0'thirty again repeated the
ten primary symbols, each beifig'written on the right of the
symbol for fwenty, or XX, The original symbol for one hundred
was probably [, Tt may.b'é,' that this was the Roman stone-
mason’s way of carving €, the first letter of the Latin word for -
one hundred (centum). Or it may have been that | was the
original symbol forlene hundred, but because it looked like C,
this symbol cafie™n time to be written as such. As was said
before, nohgdzglfnows for certain how these symbols arose.

Since OAtands for one hundred, CXXVIII, for instance,
stands.for'the sum of C, XX, and VIII, namely, for one hun-
dred twenty-eight, while CCXXXIX stands for the sum of CC,
XXX and Iless-than- X, namely, for fwo hundred thiriy-nine,
3 An X written on the left of 5 C stood for the difference be-

~O tween C and X, 50 ninety was written as XC,

Instead of the clumsy XX XXX for Jifty, the lower half of the
[ symbol for one-hundred was used, since fifty is one-half of
oue hundred. Although we read the L symbol as if it were the
letter L, it had no connection originally with this letter, since
the Latin word for Sty does not contain an L. This seems to
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point to the probability that | and not C was the original
symbo!l for one hundred.

Since L stands for fifty, an X written on the left of L stands
for the difference between L and X, namely, forty, while an X
written on the #ight of an L stands for the sum of L and X,
namely, sixty.

The symbol for one thousand was originally the Greek letter{
phi, which was written ®. In course of time, this symbol be-
came simplified into (1D, which in turn came to be writtén 28
M, possibly because the Latin word for a thousand was mille.

The symbol for five kundred, or haif of a thoysand, was
originally I). Notice that this is simply the rig]:t§hand portion
of the (1) symbol for a thousand. In time, this I symbol came
to be written as D. N

In a book by Suetonius, printed in 1?’15, the title page bears
the date AV
(1D 1) CEXV.

_ The first symbol represent§ithe Greek ®; the next is the
- symbol representing 500,31 half ®; the CCXV, of course,

stands for 215. .

The symbols we hs(i% discussed include all those commonly
used today for datés'on monuments, public buildings, and the
like, and for chapter and page numbers in books, even though
a much betfef“system of writing numbers has been in use for
nearly a.faiennium.

For thousands of vears no real development was possible in
the ‘simple number-reckoning known to the Greeks as logistic

.. ("calculation”) and now called “arithmetic.” The reason was

Xthat it was hopelessly fettered by clumsy and complicated

systems of writing numbers. It was not until the fifteenth

century that simple modern processes, such as those of multi-
plication and division, became possible, thanks to the inven-
tion. of a simple method of writing numbers.

Before we discuss our present simple method, we must
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digress and take a look at the way in which calculations were
made in ancient times, since our present method of writing
numbers was invented to fit in with such calculations.

When nowadays we wish to make some computation that
we cannot do “in our heads,” we simply take pencil and paper
and set about it. It is hard to realize the difficulties, bgth
mental and physical, that had to be overcome during ‘the
thousands of years that elapsed before a simple method of
indicating numbers was invented, and before writingmaterials
became cheap and plentiful. N

First, let us deal with the physical difficulty o¥dbtaining ma-
terial on which to write—though it must.b¥remembered that
it was almost impossible for the averagdman to make even
simple calculations in writing as long a’s.ﬁumher—reckoning was
fettered by clumsy systems of writing numbers. Some kind of
counting-frame was almost essential under such circumstances.

Few of us realize that, evema hundred years ago, paper was
expensive, since the manufaeture of paper from wood pulp by
machinery had not then“been invented and it was made, by
hand, from linen rags.\Even this linen paper was not made in
Turope until th ((Sufteenth century, though the Chinese knew
how to make it §fleast a thousand years before that date.

Before ’glle'.mtroduction of linen paper into Europe in the
fourteenth)century and the development of printing in the
following hundred years, books of all kinds were so scarce and
p;:ggtehs that they were available only to the rich and to
Joermbers of communities who treasured them in their Ii-
N Jbraries. Some of them were in the form we know today, con-

" sisting of bound sheets of hand-written papyrus or parchment;
_others were in the form of rolls of such materials, both of which
were very expensive and scarce.

Papyrus was a kind of writing material made originally in

Egypt from a reed called popu by the Egyptians. We read in
the Old Testament about an “ark of bulrushes” made for the
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baby Moses. These ‘“bulrushes” were probably papu reeds.
They grew in shallow water by the edge of the River Nile.
The stem of the reed was cut into thin strips, which were laid
side by side on a board so as to form a sheet of the required
width. Another layer of these strips was then placed on top,
and the two layers were soaked in water. It is thought that
there was a natural gum in the plant, for when the layers were '
pressed out and dried in the sun, they stuck together The Su¥s
face was then polished with a smooth shell or a piece of j 1vory
When several of these sheets of papyrus were ﬁmshed ‘they
were joined together into a long strip. A rod was then fastened
to one end of the strip, and at last it was ready, fo‘r 4 writer, or
scribe, Having written his book, an author wohld have to em-
ploy a large number of copyists who Wouk}labonously——and
often with many accidental departureé\from the original—
copy the work by hand. Each book( %Wwotild then be rolled up,.
put in a little box, and carefully gUarded in some library. All
this shows how costly and scaree books written on papyrus
must have been. Ny

The oldest known mathematlcal book in the world was writ-
ten on papyrus by, én® Egyptian sctibe named Ahmes, or
Ahmose, more thaﬁx\thlrty—ﬁve centuries ago. It is now in the
British Museund.and has been translated into English by Pro-
fessor T. E. Peét, who renders the title as “Rules for Enquiring
into Natu:e, ‘and for Knowing All That Exists.” Ahmes was
not th\author of the boak, his papyrus being a copy of a book
wn«tten in the reign of King Amenemhat 11, about 2200 B.C.,
,wog\some four thousand years ago. Ahmes adds a note: “Beﬁ
hold, this roll was written under the King of Upper and Lower
Egypt Aauserre. It was the scribe Ahmose who wrote this
copy.”

This Ahmes Papyrus, as it is called, shows that even four
thousand years ago the Egyptians were inventing ways of deal-
ing with fractions, while they knew how to work problems
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that we should nowadays work by algebraic equations. They
had also discovered that the circumference of a circle can al-
ways be divided a fixed but indeterminable (as we shall see}
number of times by its own diameter.

Parchment was even more costly and scarce than papyrus.
It was, and still is, made from the skins of animals, usudlly
sheep or lambs. A still more expensive form of parchmerit is
vellum, which is made from the skins of calves. K%

Parchment was so costly and valuable, and consefytently so
scarce, that the custom arose during the Middle'Ages of wash-
ing the ink off an old manuscript and ysirg“the parchment
again for a new book. Such manuscripts.are known as palimn-
psests (palin, “again,” psao, “rub smooath”). Fortunately, in
course of time, the original writing ¢n Thany palimpsests shows
again, to some extent. Some valdable knowledge of the anclent
world has come to us by makigig-out the original writing under
the second—or even third+handwriting on an old parchment.
In the British Museum? {5 a theological book of the ninth or
tenth century, writfen over a sixth-century book on Latin
grammar which impurn had been written over a history writ-
ten in the ﬁft]i\@sxi’tury_. Another book in the same coltection is
a work of themninth century which is written partly on parch-
ment taken from a sixth-century copy of Homer’s Tliad,
partly’aiva copy of the Gospel of St. Luke, also written in the
sixticentury, and partly on a fragment of the Elements of

Eﬁt id, written in the seventh century.
%" Enough has been said to make it clear that it would have

been impossible to take a sheet of parchment or papyrus in the
way we take a shect of paper today for jotting down some
calculation, even if such calculation had been possible under a
complicated and cumbersome system of writing numbers.

A pupil in 2 Roman school two thousand years ago was
taught to write on a tablet made of wood, one side of which
had been coated with wax. Instead of & pen or pencil he used a
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stylus, or pointed stick, the blunt end of which was used for
smoothing out the wax preparatory to using it again. A pupil
might possibly have written on his tablet the resulfs of his
calculations, but the actual calculations would have been made

on a counting frame called an ebacus, which will shortly be
described. Sometimes two or more tablets would be joined to-
gether by leather hinges (Figure 5). These tablets had raised: N
edges to prevent the words that were written on the wax from,
being rubbed out by friction. A\

Fic. ,5.’:3.
[Reproduced, by permission of Ginng’z;:i(i Company, {rom Latiz for Today.)

It is thought that ourpresent form of book originated from
these hinged Roman tablets.

Before and dugiﬁg\the time of the Roman Empire, very
simple calculations, such as the counting of votes, were often
made on a iray covered with sand. Marks wcre made in the
sand with/@ pointed stick. Afterwards, the sand would be
smoot\h@*dut by hand. Euclid and other mathematicians used
such gand-trays for drawing geometrical figures. Practically

...aiﬁ;he geometry learned in school today was first worked out
\\by figures drawn on such sand-trays more than twenty-two
centuries ago. The Greek word for a flat board or tray was
abax, and the sand-tray used for making calculations was called
an abacus.

The word abacus was later employed for many different

kinds of counting frames used in ancient Egypt, India, Greece,
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the Roman Empire, and many other lands. The abacus is still
used in China and Japan and in parts of Russia. Sometimes an
abacus was simply a board with lines drawn on it. Pebbles,
beads or counters were placed on the lines. The Latin for a
pebble was caloulus, hence our word “caleulate.” Each counter
that was placed on one particular line stood for one object;
each counter placed on another line represented ten of those
objects; each counter on a third line represented one indred
such objects, and so on. - >

The all-important principle is that the same munter may
stand for one object, or ten objects, or one hundred objects,
or one thousand objects, its value dependmg on the line on
which it is placed. It is on this principle t&a‘t our present system
of written number-symbols is based. $6-%e must consider the
abacus in some detail. \

An improvement on the ruled board was a board in which
grooves were cut. Counters were then placed in these grooves.

In the later years of the Roman Empire, rods or wires were
often used instead of grooves. Beads or counters would then
have holes bored m\’t“hem so that they could be slipped on to
the wires.

Should the.rééer wish to introduce a child to arithmetic in
an mterestmg way that will make clear the reason for our
present {nethods of working addition and subtraction, he will
find jt.helpful to make him a model abacus, and teach him to
p[a\y about with it. Take a piece of wood about 8 inches by 2
Jinches and about # inch thick. Drive four 1ong nails through
. the wood, so that their points stick out as in Figure 6.

Cut out about thirty small pieces of cardboard, to serve as
counters, and bore a hole in each piece. If it is desired to teach
him Roman numerals at the same time, let him pretend heis 2
Roman merchant living about A.p. 200. Being 2 Roman, he
must mark his abacus with the Roman numerals 1, X, C and
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M, as shown in Figure 6. He must also pretend that the only
nupibers he knows are Rorman numerals.

“Two of his ships have just docked at Ostia, the port of Rome,
carrying blocks of Egyptian granite ordered for a new building
in Rome. One of his captains reports that his ship carries

i

LN TG 6

M CC LXXX I}f\k}dcks, the other captain says that his ship
has brought M\XXX VI blocks. He wishes to know how
many block$)6f granite have arrived in the two ships. This is
what hegatst do:
I'icttﬂ.‘kes his abacus and sets out counters en it to represent
MEC LXXX IX, as shown in Figure 7.
~ He now turns to his other number, M XXX VIIL Starting
\/ with the eight units (VIII), he commences to add eight count-
ers to the units’ wire. He finds, however, that with the addition
of the first of these eight counters the total number of counters
on this wire becomes ten.. So he takes off all these ten counters
from the units’ wire and instead of them places one counter on
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the X {tens’) wire. This counter looks like all the others, bul
when it is on the X wire il represents ten times as great a number
as it would on the units’ wire. After this operation, the units’
wire is empty. He can now slip the remaining seven of the
VIII unit counters on to it.

\'\" Fic. 7
He thensdurns to the three tens {(XXX) in the number
M XXX VIII The X wire, he notices, now contains nine
counters, mcludmg the one just added to it. As he starts to

ad&three counters to this wire, to represent the three tens, or
X,XX to be added, he finds that the addition of the first of

" ‘  ther makes the number of counters on this wire up to ten. So

he takes off all those counters and instead of them places a
single counter on the C wire. Again, this counter looks like all
the others, bul when it is placed on the C wire it at once assumes @
value thal is ten times s great as thas of a counter on the X wire,
and one hundred times as great as that of a counier on the units’

wire. The two remaining X counters can now be placed on the
empty X wire.
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As there are no hundreds in the number M XXX VIII he

pow passes to the thousands. Here he finds only one M, so he

merely adds one counter to the M wire. His abacus will now
1ook like this: :

[ M ¢ %X |
FIGS

The Roman merchan€, :(})uld now take his wax tablet and
write down MM CC(}Q{X VII, an exact “picture” of the final
appearance of thebacus.

This is the ;v\a Roman worked addition. He did just what

we do in ourHeads when we add, only we have a much simpler
way of §1Q}i'cating the numbers. As we shall see, our present
methodiof writing numbers was developed expressely to indi-
cat\é}dunters on the abacus.
\Subtraction too was worked on an abacus by 2 method which
was exactly similar to the one we use today, only we do the
work in our heads, thanks to the simplicity of our number
symbols. S

Once more let your child pretend he is a Roman merchant,
this time one who deals in olive oil. When he last took stock,
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he had MM CCC XXX III amphorae, or jars, of olive ail in
his storeroom. Now he takes stock again, and finds there are
only M CCCC X VII amphorae there. He wants to know how

many he has sold. '
He takes his abacus, and sets out counters on it to represent
the original number MM CCC XXX IIT, thus: ~

7S
.’//

ACM C X |
’\\N F1e. @

He vqﬂl now have to remove counters representing the
M GQCC X VII amphorae that remain in bis storeroom. Then
%e\cwnters remaining on his abacus will stand for the number
{of amphorae he has sold. '

A \ Starting as before with the units, he at once runs into the
"\  problem of how to take seven (VIL) counters off a wire that
A holds only three (III) counters. To get over this difficulty, he
takes one counter off the X wire and instead of it puts fen
counlers on the units’ wire, which will then have thirteen
counters on it. He can now take seven (VIT) counters off the

units’ wire, and only six counters. will remain on it.
Turning to the X-wire, he finds he now has only two counters
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left on it. However, he can take away the solitary X in the
number M CCCC X VII, leaving only one counter on the X
wire.

The C wire has not had any of its three counters disturbed,
but he cannot take away four C counters (representing the
CCCC in the number ke is subtracting) until he has taken one
M counter from the M wire and put fen C couniers on the C
wire to make up for it. This C wire now has thirteen countefs
on it, and he is able to take away his four C counters (CCCe),
leaving nine of them on the C wire. N\

The M wire has only one counter left on it: this hebakes off,
since the number he is subtracting contains opd(M.

His abacus will now look like this:

AN %

\ ) Fic. 10

Tt telis him that he has sold nine hundred sixteen amphorae
of oil. A Roman would have written this number on his tablet
either as CM X VI or as DCCCCX VL.

We now know how a Roman used his abacus in making the
simple calculations that came his way. How does it happen
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that we can do such calculations so easily today, without using
an abacus? Partly because we can joi down numbers on any
old scrap of paper, but chiefly because we use only ten number
symbols, which are given a positional value that enables them
to give us a mental “picture” of counters on an abacus.

How, when and where did we get those symbols? To findQut,
we shall have to take a look, first at India as it was twenty-one
hundred years ago, then at a great Arab empire thatdobmed a
connecting bridge for commerce and ideas between Asia and
Europe a thousand years ago. 0

Some two hundred years before Chrlb%\a powerful king
named Asoka ruled over mosi of India)HE was converted to
the religion called Buddhism and spent his life in spreading
that religion throughout his kinedem. What interests us as
students of mathematics is nof King Ascka’s religious belief,
but the fact that he set up.a{'large number of stone columns,
carved into which werelthe principles of Buddhism. Only
thirty of King Asoka’sifiscriptions remain, but on them have
been found the ea{hest examples of our present-day number-
symbols. Among these number-symbols are

QO [ I+ 4
'\~ One  Twe  Four Six
\\ Fic, 11

8% A century or so after the reign of King Asoka, certain

records were cut in the walls of a cave in a hil! called Nana
Ghat, near the city of Poona, in Bombay. These carvings in-
clude certajin Hindu number-symbols, among them being

=+ 77

One  Two  Four Seven Ning

Fic. 12
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About four hundred years after King Asoka, that is, about
A.D. 200, someone carved inscriptions in caves at Nasik, a
Bombay town held sacred by the Hindus. Among these in-
scriptions are certain number-symbols, of which the following

are of intercst to us:

One

)

Five

—
———

—

—

Two  Three
Six  Seven
Fic. 13

X 3

If these number-symbols are studi,g:(‘].’it' will be realized that
our present-day number-symbol:s.;zfﬁe' Hindu characters. It is

important to notice that no sytbol for zero occurs in an

y of

these early Hindu number systems we have been discussing.
Further, they contain symibols (which we have not shown) for
numbers like twenty @r.t’y, and so on. So it is clear that they
could not originally f}}ave been used with a positional value in
the way we use khém today for representing the appearance of
counters on'atl..abacus. TTowever, the idea of positional value
must cectéilly have been introduced into India before the
ninth @éntury, since an Arab mathematician named al-Kho-

warigini, the librarian of t

he caliph al-Mamun, wrote a book

6n the subject about the year A.D. 825. By that time a symbol
\ﬁ)r sero had been invented in India; it is found on inscriptions
carved in A.D. 876 and it was certainly used in India before
that date. Why was the invention of this symbol for zcro so
important? Becausc its use cnabled the nine Hindu symbols
1,2,3,4,5,6,7,8and 9 to suffice for the representation of any
number, no matter how great, The work of a sero is fo keep the
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other mine Symbols in.their proper abacus places, by indicating
that there are no counters on this or that wire of the counting
frame. Our word “zera” comes from the Arabic sifr, which was
a translation of a Hindu word swmys, meaning “void” or
“empty.” Sifr has also passed into the English language, as an
-~ alternative to “zero,” in the word “cipher.” “Zero” is itsel{a
contraction of the Italian word szepiro, a rendering of the
Arabic sifr. ~\\

Let us leave these Hindu symbols for the momqnt,’dhd takea
glance at a great empire which arose aiter the)death of Mo-
hammed, the most famous of all Arabs, After his death in
AD. 632, Arabia was ruled by caliphs who, during the next
hundred years, conquered the Iand,s’fhat stretch from the
border of India to the Atlantic and\from North Africa to the
Pyrenees. ' O

In A.D. 711, the Arabs, or.Moors as they are often called,
invaded Spain from North-Africa. After the fall of the Roman
Empire, Spain had beenrtiled by the descendants of the bar-
barian Visigoths whi had seized it from the Romans. The
Arabs had onl; int‘ended to make a plundering raid, but so
divided were, Gothic rulers of Spain that the intended
plundering-raid developed into a conquest which was to last
for a loriger period than that which has elapsed since the dis-
covery.of the New World by Columbus.

Ail?é have much for which to thank the Moors. They intro-
diced new ideas about medicine and medical knowledge; they

0 taught improved methods of working in metal and leather;

they built waterworks, sluices and canals in Spain; in all, they
brought the wisdom of India and the East to a Europe which
‘had sunk back into ignorance and savage ways.

The Arabs were familiar with the work of the great Greek
mathematicians who had built up the “Golden age of Greek
mathematics” before the fragile and wonderful civilization of
ancient Greece was absorbed by the intensely practical and
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utilitarian Romans; they also introduced inio Spain the new and
revolutionary method of writing numbers that they had learned
from the Hindus, a method that was to pave the way for our
modern world of science and engineering and aeronautics.

The earliest example of a Europedn manuscript that con-
tained the then new-fangled Hindu-Arabic number-symbols is
one that was written in Spain in a.p. 976. Figure 14 shows how
they were then written. 4

"N
Fic. 14 N\
Reproduced, by permission of Ginn and Compahy,from Smith's Histery of
. Mathematics o

Tt will be seen that no-symi?af for zero is included in this
group. This symbol, however, was already used by the Arabs,
for it is met with in earlienArabic documents.

The numerals 2 afd\3 as shown in this figure were un-
doubtedly developed from the = and == symbols of the
Hindus. If the=<gymbol is written rapidly, starting at the
left of the topiline and not lifting one’s pen from the paper,
our modéra-2 will emerge. Similarly, our modern 3 was de-
veloped from the == symbol. In the Spanish manuscript of
A.D(976, this symbol has been beautified by the scribe into the
% shown in Figure 14. Our modern 4 and 5 have departed from
their corresponding symbols in this figure. Until the develop-
ment of printing did away with handwritten books, many
variations in these two symbols were made by individual
writers. Tt is interesting to notice how gimilar our modern 4
and § are to the Hindu symbols for these numbers found at
Nasik (Figure 13). Yet the modern 4 and 5 are found in
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documents only after the introduction of printing, and the
Nasik inscriptions were then unknown in Europe.

Centuries after the Arabs had introduced the new number-
symbols into Europe many people still clung to the old familiar
Roman numerals and would have nothing to do with the new
system, which they associated with traders and heathens¢By
the thirteenth century, however, the new system of wntmg
numbers had become established in various parts of Eu‘mpe It
was "ot until then that any real development in ¢he’ number-
reckoning we now call elementary arithmetic could take place.
Even our present simple methods of working multiplication
and division were only developed slowly'and laboriously dur-
ing the centuries that followed the intfoduction of the new
symbols into Europe. Many diffefeft methods were tried—
developmeants, in many cases,’af*Hindu, Arab and Persian
ideas—before our present Simple procedures were finally
established in the ﬂxteenth and seventeenth centuries.

It is a remarkable iact that so many thousands of ycars
should have passed before men thought of a really simple way
of indicating numbers. It all seems so clear to us, after the
event, that itds difficult for us to realize the long years of
struggle and'effort that lie behind our present simple system of
numbegiog’ and our easy arithmetical processes. As, however,
we follow the development of mathematical ideas through the

és,) we shall see again and again that concepts and processes

. E‘th t appear abstruse and difficult to one generation become
% clear and matter-of-fact to a later generation, thanks, in

many cases, to some inspiration leading to the development of
a new mathematical concept.

Having traced the development of simple number-reckon-
ing, we nuust go back once more to primitive times and discover
how another, and immensely important branch of mathe-

matics arose, for it was to become the foundation on which all
modern mathematics is ultimately based.



CHAPTER II

The Birth of Geomelry and the Golden Age
of Greeck Mathematics

N
AN
7\ *
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MAN’S essential material needs are those of everyl animal.

He must satisfy his appetites and secure prg]g@i:ion irom
the elements. Unlike the rest of the animal creation, however,
man was given the ability to make use of natilral objects such
as wood, stone and metal, and to take ac ‘via}lta.ge of laws and
forces, infinitely more powerful than hifuself, that are beyond
his complete understanding even tgdéy:

Fundamentally, the material j@e{relopment of mankind is
the story of the slow and often" painful steps by which men
have striven to secure foodpshélter and security for themselves.
Today, so far has ma}{ﬁ}lvanced along this road, that he can
control natural fordes\so immense that his power for good or
evil numbs the imagination. Today, man need have little fear
of non-survival g0 far as the violence of the elements or of
Creatuies "m"&ny times his own strength are concerned. His
only c@’&ée\f}ir fear lies in himself.

Unlike the animals around him, primitive man began to look
ngr{wé.ys of improving his chances of survival, by making use
of objects and forces outside himself. By doing this, he made
fife easier for himself, if more complicated and possibly no
happier.

He learned how to make cutting instruments, not only for
hunting and fighting, but also for working in wood and stone.
This meant he was no longer tied to living in a cave on a moun-

27
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tain; he could now build himself a home wherever food and
water were most easily obtainable.

He found methods of shaping and baking pots and pans;
not only could he cook his food more casily, he could store it
away when times were good as an insurance against times of
dearth. S
" His wife took a thin pointed sp]mter of bone, magdea’ hole
in the blunt end, threaded it with a piece of gut oz‘\hmr, and
therewith, to her great delight and satlsfactw,a, not only
started the art of dressmaking, but also made life less haz-
ardous and more comfortable.

After a time, his wife would doub uﬁe@s become dissatisfied
with a mugh—and—ready hut and wo
set about improving it. As he Wor]éd on it, he found that he
made a better job, and therefore saved trouble and labor in the
long run, if he was carefultd ‘cut -the beams and logs so that
their ends were—as weishould say—at nght angles to the
edges. So in time he, fastened two straight pieces of wood to-
gether at what he(judged to be the desired angle, and thus
made the first ¢arpenter’s square.

He foundhit desirable to build his house on level ground. But
perhaps theére was no such ground where he wished ta live. So
he m@Qe himself 2 level. He fastened three pieces of wood to-
gghfr so that they formed what we should call an isosceles

gle with base extended in each direction, and he cut a

Fi1c. 15

stimulate her man to



THE BIRTH OF GEOMETRY 20

notch at the mid-point of the base. He then fastened a cord at
the vertex, or top of his triangle, and tied a weight at the other
end of the cord, as shown in Figure 13.

When he was digging into a hillside to make a level founda-
tion, he would take his leveling instrument from time to time,
and rest itshaseon thesurface. When hefound that the weighted
cord lay directly over the notch at the mid-point of the base,

he knew that the ground-level was what he wanted. Of course, ),

he could not explain why his instrument acted the way it ‘did.'
“The point is, he had found out how to apply one of the forces of
nature to his needs. In order that this force of natﬁfe might
serve his purpose, he knew that a certain numbet\of pieces of
wood of certain lengths must be put together i\ certain way;
a weight must be suspended from a certain’point; a notch cut
in a certain position. When this was dowe, and only when this
~ was done, some power greater than Kig own came to his aid.
Without in the least knowing thathe was doing so, he was
. employing mathematical laws in\order to harness the mysteri-
ous force of gravitation to work for him. Here we have a very
simple illustration of what. science has been doing ever since.

The kind of leveljgg\‘iﬁstrument we have described has been
found among capyings in ancient Egyptian tombs, while
pictures of it a.}'g’éa.rved on some Roman surveyors’ tombs.

Since this,leveling instrument was used as late as Roman
times and"shce it was known to the ancient Egyptians, it is
certain +t no more elaborate leveling instrument was used in
layidg out the foundations and erecting the enormous Egyp-
£tian pyramids and temples.

" As civilization slowly advanced, men invented more and
more of these simple instruments as their practical need arose.
In doing this, they were unconsciously laying the foundations
of mathematics and physical science. :

To mark out the foundations of his buildings properly, a
man needed some method for getting lines of considerable

Q)
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length absolutely at right angles to each other. Anyone who
has tried to mark out the foundations of even a garage, or fo
mark cut a tennis court with the aid of just a carpenter’s
square and a long measuring tape, will know how difficult it is
to get absolute accuracy with such instruments. The amateur
surveyor cannot do better than use a home-made instrument
probably used in ancient Egypt, Babylonia, India and*China
centuries before the Christian era. It was simply. & tape with
two knots tied in it and dividing it in the proportion 3: 4: 5,
that is, the segments might be 6 it., 8 ft.{J0ft., or 9 ft.,
12 1t.. 15.4t., or 12 ft., 16 ft., 20 ft., to uselrhédetn units.

Picture a possible scene in Egypt thousands of years ago.
An Egyptian surveyor or harpedonapia is walking toward the
site chosen for Pharaoh’s next-gs‘éat palace. Following him
are three slaves, one of themeasrying a rope that is divided
into three sections by two Jnots.

B
Fic, 16

The surveyor marks out one line of the foundations of the
building and stations a slave at one end of this line. This slave
holds the rope at the point we have marked A, A second slave



THE BIRTH OF GEOMETRY 31

gathers both ends of the rope and walks along the line marked
out by the surveyor until the shorter end in his hands is
stretched taut. Still holding both ends of the rope, he puts his
hands down on the line. The third slave now takes hold of the
rope at the point marked B in our figure, and walks away from
the line until the whole rope is tightly siretched. As if by magic
the rope takes the shape of a right triangle with the right anglc
at the point where the first slave is stationed. 3 D

The title harpedonapta, or surveyor, meant SImply ‘rope-
stretcher.” Dr, T. E. Peet (see p. 13) suggests that this title
refers merely to a measuring rope; he finds no e\aéence in the
" Ahmes Papyrus of any method of marking ouba rlght angle.
The vast monuments of ancient Egypt, howgvér are evidence
that the harpedanaptae had some such\method! Moreover,
Democritus {450 B.c.) mentioned thetr, Jskill “in constructing
figures from lines or in proving their-properties.”

1t was with primitive tools such as these that the ancient
Egyptians not only marked out the foundations of their great
buildings, but also achieyed the astonishing feat of erecting
their pyramids, for ;gsﬁnce, in such a way that each tri-
angular face met at &xactly the same point far up in the air and
exactly above the Senter of the base—an amazing feat in view
of the instrumdents at their dlsposal :

They Wer(,\not interested in the reason why, for instance,
their lev\‘{Lor their knotted rope worked the way it did. They
did nobknow there was an explanation, based on mathematics,
’fqrgll these things that appeared to be mysteries to them.

NI the course of many centuries, the Egyptian priests ac-
quired a great fund of this practical, empirically discovered
knowledge, that is, knowledge based merely on experiment and
testing, and not on logical reasoning. It was leit to the Greeks
to discover the reasons that lay behind such knowledge.

Life in Egypt centered around the river Nile; in fact, Egypt
has been called “the gift of the Nile.”” The Nile, in turn, may
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be called the mother of geometry, and, indeed, of mathe-
matics. -

For countless centuries the Nile overflowed its banks year by
year, and the flood waters washed down the dark, fertile mud
of the Abyssinian mountains toward the delta, or triangular

-shaped mouth into which the Nile divides before it pofirs its
waters into the Mediterranean Sea. The very name(“Egypt”
is a Coptic word meaning “black earth,” a referegee”to this
fertile mud brought down by the Nile. The néw deposits of
mud covered up landmarks year after year ,a.:ﬁfi thereiore com-
pelled the Egyptians to mark out their landholdings over and
over again. This “earth measurement’ taught them a great
deal about what we call geometrical figures, in a simple,
practical form, o)

Thousands of years aiter tHe Egyptians had commenced to
use their “earth measurement,” a merchant from Miletus, the
richest Greek city of thdse days, visited Egypt and became
interested in the wealth'of practical knowledge of geometrical
matters that had‘Been gathered together in the course of
centuries by, the)scholarly priests of Egypt. Let us take a
glance at th‘iés\f}reek merchant. He may be regarded as the
father of gut mathematics.

In the'district we now call Asia Minor, there is a river that
was/oice known as the Meander. Because it twists and turns 2
g\seai: dealin its course, it has given us our word “meandering”
«\to describe the course of any stream or path that twists and

v turns. Today, the river flows into the sea through a desolate

marsh. But twenty-five centuries ago Miletus, the most
prosperous of all Greek cities of its time, stood on this site.

In 640 B.c. a boy named Thales was born in Miletus. His
parents were descendants of the original Greek setilers in this
city. From his earliest days he showed great energy and ability.

He became a merchant, and was presumably successful, as he
was able to retire and devote himself to politics and other mat-
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ters at an early age. It is said that he once made a “corner”
by buying up all the olive-presses around Miletus, but having
shown that such an action was possible, he was apparently
satisfied, for he sold his olive oil at a reasonahle price.

Early in life he acquired a reputation for political wisdom,
and was chosen as one of the “Seven Wise Men” of Greece,

His fame, however, does not rest on his trading ability nef),
on his political sagacity, but on his intellectual achievements.
Tf trade and politics had been his only activities, hisy name
would have perished as completely as the material'spiendor of
his city has faded away. We have seen that duripghis trading
days he had visited Egypt and had become ihferested in the
“earth measurement” of the Egyptians. Haying retired from
business, he devoted his leisure time tg the'study of astronomy
and mathematics. He still called iy “mathematics “earth
measurement,” but being a Greek; ‘he used the word geo-
metry. He had the insatiable thirst for knowledge that char-
acterized so many Greeks of-his and succeeding centuries, and
that was to blossom forjg]{fhto some of the greatest inteflectual
achievements of the hman race.

During his travpls\,\he had also become interested in Baby-
lonian astronomysjfor he introduced this science into Greece.
On one occasio:ﬁ, he astonished his fellow Greeks by predicting
an eclipse ofthe sun in 585 B.c. They were still more astonished
when :e]ia"e'clipse actually took place, on May 28th, 585 B.C.
The Greek historian Herodotus tells us that it occurred during
4, battle, and that it stopped the fighting and led to a lasting
\peace. Thales probably obtained his information about this
eclipse from Babylonian sources; the Babylonians were deeply
interested in astronomy centuries before Thales. Thanks to the
lead given by him, however, certain Greek mathematicians
whom we shall meet in the course of this book discovered facts
about the universe whose truth was not generally recognized
until modern times.

N\
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It is not, however, for his astronomical work that we re-
member Thales today, but for his contribution to the science of
mathematics. He wished to satisfy his curiosity by finding an
explanation for the geometric facts discovered empirically by
the Egyptians. This led him to take the first steps which were
to lead to what is now known as the deductive science’olgco-
metry. By this is meant a system of logical reasoiing which
uses geometry as a medium by means of which g great struc-
ture of intellectual thought can be built up. ,It‘IS this kind of
reasoning that has led to the developmefit of most of our
mathematical concepts. \\

It is not easy to describe in simple {erms just what is meant
by deductive reasoning, but the n,on&aathematical rezder may
be able to get a rough idea of what it is from the following two
pages. O
Deduction is a form qf,’];;ure reasoning. The thinker starts

with certain first prinelples, and argues from them until he
reaches some conclusigh. During this process he uses only facts
that are agreed fiklprinciples or have themselves been proved
from such firstprihciples. This form of reasoning was known in
ancient ti{né& S @ priors reasoning, or reasoning “from that
which comes first.” Figure 17 may help to make this clearer.
In jpractice, a preliminary stage precedes the actual de-
d};gﬁ\fc proof of a geometric proposition. The first stage, which
Jssusually worked mentally, is known as the “analysis,” or

‘ “loosening,” for this is the exact meaning of the Greek word

’.\'.
M
\

O

anclusis (analysis). When a chemist analyzes a substance, he

. breaks it up into the clements of which it is composed. When

2 mathematician analyzes a problem, he is making a pre-
liminary examination and loosening” or breaking up the
conclusion he wishes to reach into some agreed mathematical
fact or facts, then proceeding by logical steps until he rcaches

the particular fact from which he hopes to draw that desired
conclusion.
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He then retraces his steps and puis fogether the arguments he
used in his analysis, in reverse order. This process of “putting
together” is known as synffesis, a Greek work that means
“putting together.” “Synthetic” rubber is artificial rubber
made by puiting fogether various substances.

“A Priori"” reasoning  [“from that which-comes first'’]

N
\

FRUITS\
(:Thaf Which
boires atter™)

RN,

ROOT

{’‘That which
comes first;
first principles,
or general law."'}

~O° Fic. 17

During the victorious advance of the Russian armies in
World War II, Russian engineers waded across a river by
night and laid under-water foundations for a bridge, siarting
from a suitable landing-place on the enemy-held bank of the river
and working their way backward toward their own side of the
river. Afterwards, it was a comparatively easy matter for the

a
A,
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Russians to throw a bridge across the river from their own bank,
using step by step the foundations that had been laid in re-
verse order to that followed during the actual attack.

The first stage in the above military operation was the de-
velopment of a plan in the mind of a Russian general. He
thought out the line of attack from his objective (the point
that was to mark the conclusion of the operationshe hoped)
and finally arrived, in his mind, at the point from which the
operation would eventually start. This first stagé corresponds
to the mathematical analysis of & geometrig problem.

The second stage of the operationnamely, the actual at-
tack, corresponds to the synthesis of.the mathematician, since
the attack started at the “jumpingwofi-point,” then followed
in reverse order the steps laid\down in the first stage, until the
“conclusion” of the operafion, on the enemy’s bank, was
reached. o 3

Such, in very roughgnd brief outline, is what is meant by
deductive reasonipg; or deduction, as used in geometry and in
mathematics generally. It may be asked, “What use is it?”
Without it we should not have mathematics today; without
such matbés}atics we should have no science or engineering as
we knownthem today. By mathematics we calculate the move-
ment 'of the earth and draw up the calendars, without which
gljg\life would be a chaos. Mathematics enables our car-

"Qtographers to draw the maps without which trade and travel
+" would cease. It enables our meteorologists to foretell wind,
rain, frost and tides, It makes it possible for the navigator to
find his way over pathless seas and trackless deserts. Without
its aid, scientists and engineers would be powerless, and our
present-day civilization would come t6 an end. Our architects,
builders, electricians, radio workers, radiographers and count-
less others would find themselves out of employment. Our
m.Lachinery » telephones, telegraphs, radios, X-rays, moving
pictures, electric lighting and heating, together with countless
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forms of modern equipment might as well be thrown on the
scrap heap.

And the foundation of all this mathematics is deductive
reasoning. So we can be grateful that the retired business man
Thales made wise use of his leisure time,

Untike many later Greek mathematicians, Thales liked to
apply his knowledge of geometry in practical ways. He seemis,
to have astonished the Egyptians by being able to calcuiate
the height of one of their pyramids by measuring the. length
of its shadow. According to the writer Pliny, he d:gl this at the
hour of the day when a man’s shadow is the sante length as
himself. Tt seems highly doubtful, however, whether this would
have impressed the Egyptians, for as earlst 1500 B.C. they
had sundials and so were thoroughly famillar with questions
connected with shadows, even though>they knew nothing of
similar triangles, as such. A moregitebable version of the story
is given by Plutarch, who stated that the problem did not de-
pead on the hour of the dap Bt required a knowledge of the
properties of similar triafigles.

Thales also applie &is knowledge of geometry to calculate
the distance of a Sb.l} rom the shore, Doubtless he made many
other practlcal apphcatmns of the subject, but we have no in-
formation oni thJs point, Although we have no record of any
book or decument written by him, the name of Thales will al-
ways rapk high among mathematicians for the pioneer work
he p‘erformed
¢ S‘ome thirty-six years before the death of Thales, another

great mathematician was born only a few miles from Thales’
birthplace.

Off the coast of Asia Minor is the mountainous little island
of Sarmos, about the same size as the Isle of Wight. At that
time Samos was inhabited by descendants of Greek settlers
who had gone there about 1000 b.u.

About the year 580 B.c. (nobody knows the exact date} a
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Greek boy was born in Samos whose name is found in every
text book on geometry today. That name is Pythagoras. Little
is known of his early life cxcept that he studied under Thales
and probably visited Egypt on his master’s advice in order to
study the “earth measurement” of the Egyptian priests. When
ke was about fifty years old he left Samos and went to liveun a
town called Crotona, in Southern Italy. A\

We do not know the reasons that led Pythagors t6 leave
Samos, but once at Crotona he quickly gathered”together a
kind of brotherhood and school of mathemafical philosophy.
Many of the beliefs held by the Pythagoréans strike us as far-
fetched and fanciful, but nevertheless mathematics owes much
to the work done by the followersyof Pythagoras, who con-
tinued to function long after his'death. The members of his
school exercised a great inﬂucncé’ihroughout the Greek world.
They appear to have practided communism, not in the literal
sense, and certainly notin the modern political sense, but
strictly among themgelves. Not only did they share their
worldly goods ampfig each other, but also all their mathemati-
cal and philosophieal discoveries. They were at first bound by
an oath not ¥o'reveal the secrets and teaching of their brother-
hood. At{first, these teachings are believed to have heen
treasubed-orally among the members of the society, but as time
passéd they were put into writing, and one of these Pythag-
ean documents exercised a great influence on Plato.

\\ " Either Pythagoras or one of his followers discovered the
A " harmonic progression in the musical scale, connecting the
Y length of a string and the pitch of its vibrating note. It may
have been this discovery that led them to believe that “pum-

ber” forms the element from which all things have developed,

and that everything in creation can be expressed in numbers.

They invented the terms “odd” and “even"” numbers:

“odd” numbers were male, “even” numbers female. Being an
exclusively male society they of course laid down the obvious

fact that odd numbers were divine, even numbers earthly.

A
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Doubtless, their “even-number” womeufolk were in complete
agreement, at any rate, with their discovery that odd numbers
were the lucky ones, even numbers the unlucky ones! These
superstitions lasted even to Shakespeare’s day. In T/e Merry
Wives of Windsor Falstaff says:

“This i the third time; T hope good luck lies in odd num-
bers. . . . They say there is divinity in odd numbers, eitheginy
nativity, chance, or death.” O

The Pythagoreans made no practical use of the géometry
they studied. They were intercsted only in the absgré,ct side of
mathematics. They continued, and greatly extendéd, the work
done by Thales in building up the lower founddtions of geom-
etry as we know it, finding logical p{oo\fs; by deductive
reagoning, about geometric facts. TheStatement and proof of
such a fact was called a propesition, and the name of Pythag-
oras is always linked with a propesition, or theorem, which
states that the area of a squaré'drawn on the longest side of 2
right triangle is always equal to the sum of the areas of squares
drawn on the other two sides. It is doubtful whether the
Pythagoreans could¢grove that this holds good in the case of
any right trianglenPythagoras, it is true, is said to have sacri-
ficed an ox in €elebration of the discovery of this theorem,
but the truthiof this story seems unlikely, since the Pythag-
oreans K@}ﬁd allow no blood to be shed in this way. What is
more prebable is that they knew of two special cases of this
the,gi'em. If the sides of a right triangle are in the proportion
'3:4.5; or if a right triangle has its two shorter sides equal, the
tfuth of the theorem is self-evident if, in cach case, a simple
construction is made. Even though the reader may know noth-
ing about deductive reasoning, he can see for himself that the
large square in Figure 13 is ¢qual to the sun. of the two smalier
squares.

This theorem explains the mysterious behavior of the
Egyptians’ knotted rope.

Figure 19 shows the other special case: the shaded part is the

£
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right triangle with its two shorter sides equal to each other. If
the diagonals of the largest square in this figure are drawn, it
will be seen that the four right triangles into which that square
is divided will exactly fit the two smaller squares.

When we come to the story of algebra we shall see how this

theorem led to a very perplexing and disturbing p;ol\)lem for
ne
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%n@s’e who held the Pythagorean view that everything could be
{expressed in some way by numbers. They were to find that

A\ they could not express the exact length of the diagonal of a

O

square by any number on the number-scale.

Many mathematical terms can be traced to the Pythag-
oreans. The very word “mathematics” was ptobably first used
by them. The Greek word matherma simply meant “science.”
If the Pythagoreans were constructing a figure that was to be
equal in area to a given figure of different shape they called it a
case of parabole, “lying side by side,” “equal,” if the base of
the final figure fitted the original base; of eflipsis “left short,”
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if it fell short of that base; of Ayperbole “exceeding,” if it ex-

. ceeded that base. Hundreds of years later, a great Greek geom-
eter named Apollonius followed their lead and chose the
names parabola, ellipse and hyperbola to describe sections of a
cone, in whose construction a certain line equalled, fell short
of, or exceeded another line.

N
RO
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Theé, Pythagoreans were the first to discover that the earth
is a‘sphere This they did by observing the shadow cast by the
Searth on the moon. Although this fact became an accepted
commonplace to later Greek mathematicians, it was not until
the time of the great navigations of the fifteenth and sixteenth
centuries that the average man was convinced that the earth
was not flat. '
The most important researches made by the Pythagoreans
in other fields were (1) those connected with the theory of
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numbers, which we shall dea! with later in the book; (2) the

-search for an answer to the questions “Can any two lengths

each be divided into parts, all of which are equal to cach
other?”; “Can any flat surface be completely filled by repeti-
tions of the same figure?”’; “Can any volume be filled by repeti-
tions of the same solid figure?”’ The answers to these questions
are not as simple as they may appear to anyone wholias not
tried to answer them. Try, for example, to find{a) common
measure for the length of the side of a squarednd the length
of its diagonal! In the course of these inv tigations, the Py-
thagoreans discovered the regular dodéca edron, or solid
figure with twelve equal pentagonal, fates, and the regular

icosahedron, the beautiful solid figuréghclosed by twenty equal

and equilateral triangles. NS,
If the “net” on the right of each figure is drawn (preferably
on a larger scale) on stiff paper, cut out and folded along the

The icosa-hedron_(*/20-faced™ solid)

Fic. 20
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dotted lines, the reader can make the solid figures suggested in
the perspective drawings on the left. Join the faces with
Scotch tape.

There are only five of these regular solids; the other three
were discovered by the Egyptians. They are the cube, the
tetrahedron, or solid enclosed by four equal and equilateral -\
angles, and the octahedron, or solid enclosed by eight such
triangles. R,

'\
£ 3
N\

D The tetra.hedron (''4-faced"” solid)

The octa-hedron (*8-faced’’ selid)
Fie. 21



PN
w0
) |

44 MAKERS OF MATHEMATICS

Our story of geometry now passes to the year 400 B.c. About
a mile outside the city of Athens there was then a pleasant
garden, surrounded by a wall and containing walks, groves
and fountains. It was believed to have belonged to a person
called Akademos, and it was called Akademia after him., Here,
for nearly fifty years, a great philosopher, who owned.a&mall
estate near by, used to teach his philosophy. The philpsopher
was Plato. His school of philosophy became kngWwiias the
Academy, from the name of the garden in which’he taught
for so many years. It is for this reason that a placelof learning is
still sometimes called an “academy.” (¢

In the year 400 B.c., the people of Athens—or those of them
who thought about serious matters—~grere very much in the
same position as are thoughtfull people today. Athens, a
democracy, was engaged in a lifeor'death struggle with Sparta,
a slave-siate ruled by a handful of all-powerful despots.
Thoughtful people were d,ilr;!fressed, then as now, by the way so
many of their fellow cilizens thought only about their petty
personal affairs and-tefused to try to understand questions of
peace and war and\good government.

It wasin cirtuifistances like these that Plato began to teach
his philosophy. He wished to find—as thoughtful people today
desperatély wish to find—the best way in which men may be
governed. It would be out of place to discuss Plato’s ideas and
5\gge‘stions in a book like this, except to note that he insisted

(&hat every man who wished to become 2 leader of men ought to
“be trained in mathematics, by which, of course, he meant geo-

metry. Hewas not thinking of any practical use to which they
could put their mathematical knowledge; all he wanted was
that they should have what he considered to be the finest pos-
sible training for the mind of a future leader of men. This ad-
vice was consciously or unconsciously followed by one of the
greatest leaders of all time. While still a struggling lawyer,
Abraham Lincoln af the age of forty studied and mastered the
first six books of Euclid, solely as a training for his mind.
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Plato’s attractive views on the way in which mathematics
ought to be taught to young people seem very modern, Amuse-
ment and pleasure, said Plato, ought to be combined with in-
struction, in order to make the subject interesting. There
should be games of various kinds, such as a game played with
different kinds of coins mixed together. There should also be
problems connected with boxing and wrestling matches. These
things, said Plato, make a pupil useful to himself and more.))
wide awake. O

In the rules he laid down for his grown-up followers;-Plato
was very strict. “Let no man destitute of geometry énter my
doors” was the inscription over the entrance to Mis)school. He
insisted, even more strongly than had the thagorea.ns, that
geometric facts must be proved by rigorous logical reasoning.
Tn order to aveid constructions thatyinvelved the puzzling
problem of infinity he Ipsisted on the hard-and-fast rule,
probably made before his time, t]:!a‘t'bnly a ruler and compasses
might he used for geometric gonstructions. In consequence,
people puzzled their heads yainly for hundreds of years, trying
to trisect an angle, that igf divide any angle (not merely a right
angle, which can eas%bef trisected) into three equal parts, us-
ing only ruler and kompasses. They also tried in vain to draw a
square equal in §2€4 to a given circle, and to draw a line equal
to the edge of\ad cube that would be double the volume of a
given Ct@;\.‘l‘hey did not know that none of these three con-
structiéiis’can be done if only a ruler and compasses are al-
Iom;d.’}co be used. The long, unsuccessful search for their solu-
fion was 1ot all wasted time, for it led to the development of
Véry important mathematical processes and concepts.

The book that helped to train the mind of Abraham Lincoln
was written some three hundred years before the Christian
era. In 300 B.c. we meet a man whose name has been more
widely known than that of any other mathematician who has
ever lived. He was far from being the world’s greatest mathe-
matician, but he wrote the world’s best-selling maathematical
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textbook of all time, although he, the author, never knew this,
It was a book on geometry that was to be used for more than
two thousand years all over Europe, and, toward the end of
that long period, in America. Until about fifty years ago, school
geometries had his name, Euclid, as their only title.

We do not know when or where Euclid was born; we\know
remarkably httle about his life, except that he taughf\mathe-
matics in the royal school at Alexandria in ngj:i‘tr}hat had
been founded by King Ptolemy, the illegitimate-son and suc-
cessor of Alexander the Great, the founder,of Alexandria. But
we do know that by patient scholarly Iabére collected all the
geometrical facts known in his dayy atranged the various
theorems in proper order, improved, their proofs where neces-
sary, and added theorems he himé;&l had thought out.

His was the master mind ithat was able to collect all the
muddled, confused pieces of #’vast mathematical jig-saw puz-
zle and put them together in such a way that a dear and
beautiful picture sgdflenly emerged from what had been a
welter of odds and ends of mathematical knowledge. This was
the reason why\his textbook proved to be the world’s best-

Ps

sefler, \N
His masterpiece consisted of thirteen “books,” each written
on a geparate roll of parchment. The whole work was called the

Elgnestts. For twenty centuries the first six books were the
\smdent’s usual introduction to geometry.

O “All the proofs Euclid included were, of course, based on
\f % certain agreed first principles. So long as these first principles
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are agreed upon, Euclid’s conclusions hold good. If, however,
some of the first principles he used in his arguments are #of
agreed upon, some of his conclusions no longer hold good Some
of the higher brauches of mathematics today make use of
geometries that are based on first principles different from
those chosen by Euclid, such as the geometries of Lobachevsky
and Riemann. These two mathematicians lived during the first
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half of the nineteenth century. The systems of Euclid, Lo-
bachevsky and Riemann are all equally logical, and each ap-
plies to its own special field of inquiry. So far as terrestrial
calculations are concerned, Euclid’s geometry is unchallenged.

It is interesting to trace the way in which the Elemenis be-
came known to the Europe of the Middle Ages. Strange to say,
this knowledge did not come directly from any Greek manu-)
script, but from the Arabic, >

Some time between 750 and 800, an Arab caliph seeu,rcd a
copy of Fuclid’s Elements, in the original Greek. It Game from
Constantinople, which had not fallen to barbarign$ when the
rest of the Roman Empire disintegrated, Several Arabic
translations were made from it, one of th,ems\whxle Harun al-
Rashid, the caliph of the: Arabian N zghts Mes, ruled the Arab
empire.

In 1120, an Englishman, Ath.e]]ia.rd or Adelard of Bath,
made 2 Latin translation from am Arabic version. Several other
Latin translations were made wne of them having the distinc-
tion of being the first Qﬁportant mathematical hook te he
printed. It was publlkhed in Venice in 1482 and has beautiful
figures printed in its ‘wide margins.

Euclid’s bookswds not translated into English until 1570,
when Shakespicare was a boy of six. Although late in the field,
it gave oo@lmeasure the text, with notes, taking up 928 pages!
Copiesy %ﬁ “this book may be found in some large public
libraties. An error was made in the title page of this first
Eng\hsh edition of Euclid’s work, the author being described
a8 “the philosopher of Megara.” In the Middle Ages, and, as
can be seen, even in the time of Queen Elizabeth of England,
this error was often made. The author of the Elements was not
the only Euclid ; there was another man of the same name, a
philosopher, born at Megara, a town on the isthmus between
Attica and Corinth in Greece. Writers in the Middle Ages
often confused the two Euclids, as has been done in this case.
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The title page describes the preface as “very fruitfull’”; as a
matter of fact it is often far from fruitful, while some of
Euclid’s theorems are altered, others joined together.

After the publication of the first English version, and until as
recently as 1900, edition after edition of Euclid’s bogk ap-
peared. So many copies of this book have been sold that
probably few other books, except the Bible, have dver had as -
wide a circulation. O

Our pursuit of the story of the Elements has\taken us right
up to modern days. We must now retra@é our steps and go
back to the time of ancient Greece onc¢énore so that we may
pick up the thread of our tale of geoietry’s beginnings.

Even before the birth of Chfist, Greek mathematicians
had mastered the geometry Of the sphere and knew how to
handle such things as circles and triangles drawn on the surface
of a sphere, ON°

Circles conmected with a sphere
{g) Great circles
(s) Small circles

Spherical triangles are bousnded by
intersecting arcs of great circles.

Fig. 22 Fig. 23

1t 1s only natural that the study of the sphere should have
occ-upled a prominent place in Greek mathematics as soon
as It was realized that the earth was spherical in shape. Such
study arose through the burning curiosity of intelligent Greeks
regarding the shape and dimensions of the earth on which
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they found themselves. In a later chapter, we shall deal
more fully with the branch of mathematics known as trig-
onometry that arose from the study of spheres and circles. At
this point we shall merely discuss the purely geometric knowl-
edge of the sphere that was developed by the ancient Greeks.
As has been said; Pythagoras was probably the first to realize
that the earth was in the form of a sphere. It is certain that by
the time of the philosopher Aristotle, that is, about 340 BC.,
various attempts had even been made to calculate the cir-
cumference of the earth. One such attempt had been‘made by a
mathematiciap named Eudoxus. O

Round about 250 ®.c., the greatest mathetnatician of an-
tiquity, Archimedes, was able to record in @ book known as the
Sand Reckoner, that “certain writergd fiad stated that the
circumference of the earth was “thitfy myriads of stadia.”
The Greek myriad was ten-thousand; unfortunately, there was
more than one kind of stadiopised for measuring distance.
One kind of stedion, howeyer; is believed to have been equal to
about one-tenth of a modern mile. If this was the kind of
stadion mentioned K)}‘Afchjmedes, “thirty myriads of stadia™
or 300,000 stadiapwould be equal to about 30,000 miles. If we
take the figure based in 1910 by J. F. Hayford on observations
made In th}e\Un.ited States of America (equatorial semi-axis:
6378'38%§ilomcters) and do a little multiplication and divi-
sion, we.find that the circumference of the earth around the
egt,l\a&r is approximately 24,907 miles. Let us now see how,
¢two and a half centuries before Christ, a Greek mathematician
ealculated that the circumference was approximately 250,000
stadia, that is 25,000 miles if the stadion mentioned above
were used by him, an error of only some 90 miles!

In the third century before Christ, the finest library in the
world was at Alexandria in Egypt. It had been founded by the
same king of Egypt, Ptolemy, who had established the school
of mathematics where Euclid taught. Toward the latter hali
of that century, a friend of Archimedes named Eratosthenes
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was its librarian, Eratosthenes was also a mathematician,
though other Greek mathematicians did not consider he was
quite in the first class; they nicknaméd him “Beta,” which
shows that our modern grading of college students as “A, B,
C” etc. is not a very recent innovation. After reading the next
few paragraphs, the reader will be able to realize from this
classification how high was the standard of scholafship of the
Greek mathematicians two thousand years ago{)) _
Despite his rating as merely “B,” Eratosthénes may well
have made an extraordinarily close apffpximation of the

circumference of the earth. If his stadidf'was the one that was

equal to about one-tenth of a mile,\his estimate of the earth’s
circumference was only 049, in,&fror. Even if his result was
not as accurate as this, his njethod was remarkably scientific
and its originality would todey surely gain for its inventor a
higher mark than “B.” 3%

There are two occagions during the year when the sun, sol,
is farthest from the“equator, and seems to pause, sti-, before
returning towafdh the equator. One of these is called the
“winter so stite” (three days before Christmas), the other the
“summepsolstice” (about June 21st). Long before the time of
the Gr.gelcs it was known that if a staff were set upright on the
earth, its noontime shadow, which always lies due north and
south, would be longest at the winter solstice and shortest at

\Hie summer solstice,

&

Eratosthenes found out in some way—it may have been
from ancient Egyptian documents in his library—that at
noon, at the summer solstice, an upright rod at Syene in
Egypt cast no shadow. This fact was confirmed by observing
that the water in a deep well at that same place and time com-
pletely reflected the sun’s rays, the edge of the well casting no

‘'shadow on the water below. At 1he same moment, an upright

rod at Alexandria cast a short shadow on horizontal ground.
Eratosthenes knew that Syene was due south of Alexandria
and also, of course, that at noon the shadow at Alexandria lay
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due north and south. He argued that it followed that the rod at
Syene, the rod at Alexandria, the center of the earth, and the
center of the sun when directly over Syene, must all lie in the
same plane. So he was able to produce something like the fol-
lowing picture: ’ '
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Let us examine this figore; it is really very simple. Eratos-
thenes knew, of course, that the earth is a sphere and that, in
consequence, imaginary lines that continued the directions of
the two upright rods would meet at the earth’s center. He also
knew that the sun’s rays are, for all intents and purposes,
parallel to each other when they reach the earth. Se ohly an
elementary acquaintance with Euclid’s geometfy“was re-
quired to determine that the angle at the centerrof the earth
was equal to the angle between the top of, the rod at Alex-
andria and the sun’s rays. Since an arg. 'iS measured by the
angle it subtends or stretches at the center of a circle, and since,
as we saw, we are here dealing with points on the earth that are
all in the same plane, the arc SA feitst equal one-fiftieth of the
whole circumference. Now Etatosthenes knew that the dis-
tance between Syene and Alexandria was 5000 stadia, all such
distances in Egypt haviﬁg been calculated by the bematisis or
surveyors of Alexandérthe Great and King Ptolemy during the
conquest of Egypt\So the circumference of the earth, argued
Eratosthenes, ghaist be 50 times 5000 stadia, that is, 250,000
stadia. If, the stadion used for this calculation was the one we
have alrdadiy mentioned, this would make 250,000 stadia ap-
proximately equal to 25,000 miles.

And the man who achieved this result was regarded only as 2

\econd -class mathematician in the Golden Age of Greek mathe-

4

AN matics!

~ Inthis chapter we shall mention only two other great miathe-
maticians of this Golden Age: others will find a place in later
chapters, though even then we shall have discussed only a few
of the many men who laid the foundations on which our
present-day mathematics has been built. Let us first glance at
the work of the younger and less famous of two of the greatest
‘mathematicians of all time, Apollonius of Perga. He was born
some fifty years after Fuclid had written the Elements. Little
Is known about his personal life, except that he studied at the
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school in Alexandria where Euclid had taught, and that he be-
came one of the shining lights of that school of Alexandria.

We can imagine Apollonius, inspired by Euclid’s example,
making up his mind to gather together and put in order every-
thing that was known about a branch of mathematics that
especially interested him and that is known as Conic Sections.
In carrying out this ambition, Apollonius contributed more’
to his particular subject than Euclid had done to elemefitary
geometry, for he thought out a completely new methiod that
was far better than the method that had been used &t dealing
with conic sections by the mathematician Medagchmus, who
had lived about 350 B.c. So good were the migthods of Apol-
lonius that they held the field for eightee{'céﬁuries, until the
year 1637, when the great French mathercatician Descartes
published a book that completely reyolutionized the treatment
of the subject, and, for that ma:cbe&f,'al] Greek geometry. In a
later chapter we shall see how, Descartes’ work made what had
been a difficalt subject extrémely simple, and opened up new
mathematical concepts that lie at the root of modern mathe-
matics. Since we no 1@«g’er use the methods of Apollonius, we
shall merely glande at the meaning of “conic sections,” all of
which are'nowq.qa:yé handled much more easily by the algebraic
application of analytic geometry invented by Descartes.

T eachref-the four figures that follow, the reader will find,
on therleft, an oblique cone, the kind used by Apollonius in
ordef o make his treatment of the subject entirely general;

/o1 the right, a right cone {or cone whose vertex is directly over
tie center of its base) which is only a special case, but which
may give the general reader a clearer idea of the meaning of
conic sections. Such reader should imagine a right triangle that
has been cut out from a piece of cardboard, then placed up-
right on one of its shorter sides, and rotated around the other
shorter side. The solid figure traced out by the right triangle
would be a right cone such as is shown on the right of each of the
next four figures, Now imagine such a conc made out of a solid
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piece of wood. If 4 saw were taken and a straight cut made

through the wooden cone in any direction, the shape cut bBT the

saw would be called a conic section, since the word “section”
merely means “cutting.”’

Fic. 25

Fic. 26

Thecircle is a special form of the ellipse.




GOLDEN AGE OF GREEK MATHEMATICS 55
Parahola
)
NN ¢
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Fic. 27 7\
L€
To form a parabola, the saw-cut’niust be parallel to the
slanting edge of the cone. N

To obtain the conic section :éia’dwn on page 36 the cutting
must be very similar to thatimade for the parabola, but not
parallel to the slanting edge of the cone. Further, this cutting,
if extended indefinitelyypward, must cut what might be called
a reflection of the oxiginal cone. The two outlines that result
form what are kiiown as the two branches of 2 hyperbola.

We saw (pagé41) the reasons that led Apollonius to choose
the names parabola, ellipse and hyperbola. For his work on
conic ,%i’ltl’dl‘ls, Apollonius became known as the Great Ge-
ometer.

o We now come to the greatest mathematician of antiquity—
\s?o'i:ne would say the greatest who has ever lived, i one bears
in mind the amount of mathematical knowledge available to
him when he started his work and compare this with the ac-
cumulation of such knowledge with which the great mathe-
maticians of the last three hundred years have commenced

their studies.
In Sicily, the second largest island of the Mediterranean.
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Hyperbola

Fic. 28

NS
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~O stands the ancient city of Syracuse which goes back to the year

/ 700 B.c., when Greeks from Corinth settled there.

In 287 B.c. the great Archimedes was born in Syracuse. He
was destined to hecome his city’s most famous son, and per-
haps the world’s greatest mathematician. Archimedés came of
a well- known family—his father was a mathematician and
astronomer who may have been related to Hiero, the ruler of
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Syracuse—and as a young man he was able to go to Egypt in
order to study at the royal school of mathematics in Alex-
andria where Euclid had taught for many years. Returning
kome to Syracuse, so great was his ability, energy, and power
of application that he brought the mathematics of his day to
such a height that no further progress was possible until new
mathematical tools called symbolic algebra and analytic)
geometry had been developed some eighteen centuries Igter.

As a scientist, be built up the branch of science thatideals
with the pressure exerted by liquids; he d.lscovered the laws
that govern levers, and made a host of practical {nventions,
such as a machine for raising water to a highenJevel. It is said
that the hold of a large ship belonging to Hle‘l}o 11, the tyrant,
or king of Syracuse, had filled up with wate} Hiero appealed to
Archimedes, with whom he was on wery friendly terms (it
is thought the two were related to eét]n other) to find some way
of emptying the water. Archimgdes promptly invented an
instrument consisting of a long tube, open at each end, in-
side which was a spiral pw\? of metal, shaped like a corkscrew.
By immersing one endeinthe water, tilting the tube and turn-
ing the spiral by means of a handle, the water would flow up
the tube and out-0fthe upper end.

Archimedestfound ways of moving great weights by means
of levers, cqg\wheels and pulleys. By means of such devices
he is sak%tb have moved a ship that was lying in a drydock.
He i{saaid to have declared to Hiero that any given weight
coild be moved by any given force, however small, and then
to/have remarked, “Give me a place to stand on and T will
move the earth.” Plutarch says that “when Hiero was struck
with amazement and asked Archimedes to reduce the problem
to practice and give an iilustration of some great weight moved
by a small force, he fixed upon a ship of burden with three
masts, from the king’s arsenal, which had only been drawn up
with great labor by many men, and, loading her with many

£
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passengers and a full freight, himself the while sitting far off,
with no great effort, but only holding the end of a compound
pulley quietly in his hand and pulling at it, he drew the ship
along smoothly and safely as if she were moving through the
sea.” ~\

He invented catapults that could be used at long otshort
range, machines for throwing showers of rocks through holes
in the walls of Syracuse, and long movable poles hé?nging over
those walls and having a kind of jron beak in¢them; when an
enemy ship came near the harbor walls, tHe) poles would be
raised in the air and then allowed toMtath down into the
enemy ship. When, late in Archimed@’.life, the Romans came
up against these weapons they were'so terrified that “if they
did but see a piece of rope or wood projecting above the wall,
they would cry ‘there it is,’..('ledaring that Archimedes was
setting some engine in motioh against them, and would turn
their backs and run aways’

Archimedes attached little value to inventions like these.
They were, he safd, ‘'merely the “diversions of geometry at
play.” Plutarchfadds, “Though these inventions had obtained _
for him theyrenown of more than human sagacity, he yet would
hot evensdeign to leave behind him any written work on such
subjects:.?’ If Archimedes were living today there can be no
doyi{é}h'at he would be in the forefront of those scientists and
\m\(\thematicians who are striving to prevent the use, or rather,
purpose of destroying our civilization.

As every high-school boy who studies science will know, on
onc occasion a request from King Hiero led to an important
scientific discovery. The kin g, it seems, had sent some goldtoa
goldsmith, to be made into a crown. When the crown was
finished, the king suspected the goldsmith of having substi-
tuted silver for part of the gold. Being unable to prove that his
suspicion was well founded, he appealed to Archimedes to sug-
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gest some way by which the honesty, or dishonesty, of the
goldsmith could be proved.

The Roman architect Vitruvius, who tells us the tale, says
that while taking a bath, Archimedes hit on a solution of the
king’s problem when he saw the bath-water overflow. Anyone
who knows how helpful to thoughtful meditation it is to lic in a
hot bath and hali fleat on the water may think that a more
probable version of the story would be that the sudden reahzh—
tion that ‘““when a body floats on water and loses welght the
loss in weight is equal to the weight of water dlsplaced” came
to the great mathematician as he was giving a prg:tlcal demon-
stration of this law.

Whatever may have been the cause of hls\sudden inspiration,
filled with excitement at having solvgd.\thc problem and—
more important still—of having hit\dn’an important scientific
discovery, he dashed naked through the sirects of Syracuse
crying “Eureka, eurcka, 1 h:we found it, I have found it.”
History does not relate w. hether the goldsmith was found to be
guilty or innocent, but hi® memory, at any rate, has been
preserved, thanks tQ\hns connection with the discoverer of
“the principle of .{thmcdcs

1t is to be hoped, for the sake of other members of his house-
hold, that Ar¢himedes had his own private bathroom. He must
have spepia’great many hours in it. We are told that after
taking &"Path he would ancint himself with oil and then draw
geoxﬁi\‘ical figures in the oil on his body, musing the while on
mathematlcal problems and “being in a state of entire pre-
soccupa.tlon and, in the iruest sense, divine possession with his
love and delight in science.” He seems to have been exactly
the kind of person many people—quitc incorrectly--regard as
the typical professor. We are told that he would forget about
his food when thinking out seme problem; we have seen that
clothing meant nothing to him; he would be seen sitting for
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hours musing over geometrical figures he had drawn in the
ashes scattered over his hearth, A difficult man to live with,
onc imagines, but what human mind has ever achieved as
much as his?

~ Although today Archimedes is usually remembered for his
mechanical inventions and his work in connection with,me-
chanics and hydrostatics, his greatest work, by far, layNh the
field of pure mathematics. As a ma’thematician;,,\l{t».\was Sl
preme and unchallenged. « \

He invented an improved way of writing ldrgs numbers, al-
though he never seems to have thought of 4/simpler notation
than the clumsy Greek alphabetical niastnber-symbols he used
so skilfully; he calculated the appljo{imate value of «, that is,
the ratio between the circumferenécief a circle and its diameter.
Today we know that this is ndmber that cannot be found
exactly, although its value gali be calculated to any required
degree of accuracy (a misghided enthusiast once worked out
its value to 707 decimal places). Archimedes proved by a
method known ag/the “process of exhaustion” that the value

7223 220

or T lay betwe\en—?-l-— and s
tween 3-14035 and 3-14286, a remarkable achievement when
one considers the kind of mathematical tools at his disposal.
Inci,déni;aliy, in the course of a long and extremely complicated
éotrietric and arithmetical process, he showed that he knew

of, as we should say today, be-

(8ome method for finding square roots. The “process of ex-

AN haustion” had been used two centuries before his time by a

mathematician named Aatiphon in attempts to “square the
circle” by drawing a square inside a circle, then doubling the
number of sides again and again until the area between the
fnal inscribed polygon and the circle was approximately ex-
hausted. Archimedes improved on this method by finding two
limits within which the circumference of a ¢ircle must lie. By
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successively making these limits draw closer and closer to each
other he found that the circumference was a little more than

27—215: times its diameter, and a little less than %} times its

diameter. (He needed the length of the circumference in order
to “square the cifcle,” since he had previously proved that the
area of a circle is the same as that of the right triangle whose."
shorter sides are respectively equal to the circumierent;e\'afﬁa
the radius of the circle.) ' >

Nl
N

- Figure 29 will make his general method clear.: ‘
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. It is.gbyious that in each case, the length of the circum-
ferengg'of the circle must lie between the respective perimeters
of.l:h’é inscribed and circumscribed regular polygons shown in
“the figures, Moreover, it can be shown by calculation or careful
\measurement that as the number of sides in the polygons in-
creases, the lengths of the perimeters come nearer and nearer
to each other, In other words, the length of the circumierence
lies between limits which move closer and closer to each other.
Tt will be found that if the diameter of each circle is taken as
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one umnit, the circumierence will lie between the following
[imits:

Perimeter of ~ Perimeler of

inscribed circumscribed

polvgon: polygon: “Gap™:
(4 sides) 2'8 units 4'0 units 1-2 units.®
(8 sides) 30 units 3-3 units 0-3 fnits
(12 sides) 3-1 units 32 units O¢t\units
(24 sides) 313 units 3'16 units 003 units
(36 sides) 3414 units 3-15 units > 0-01 units

Archimedes used regular polygons with"@ﬁ\sidcs in order to
get his approximation for x. The readerqwho would care to seed
full translation of the elaborate ca,l{:‘thations made by Archi-
medes in connection with this problem will find one on pages
30 to 85 in Sir Thomas Heath’s Héstory of Greek Mathematics,
Volume II. o0

Archimedes also found-8ut how to find the area of an ellipse
and the area of a segm;éﬁt of a parabola cut off by any chord.
He also found outhodw to draw a tangent at any point cn a
spiral; if he had possessed the modern mathematician’s tool
of symbolic‘aﬁg\ebra he would almost certainly have invented
the differential calculus. As it was, the method he used for find-
ing the e}?ea of a parabolic seginent was used in the seventeenth
centiey in the development of the integral calculus, as we
SQQH see in later chapters.

N Of the many books he wrote, one dealt with spheres, cyl-

- inders and cones. It would seem that he considered this to be

his greatest achievement, for he expressed a wish that his
tomb should be marked with a sphere and a cylinder.

More than a hundred years after the murder of Archimedes,
the Roman orator Cicero visited Sicily and found his tomb
near one of the gates of Syracuse. It was sadly neglected, and
covered with thorns and briars. Cicero had it restored, but to-
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day it is nowhere to be found, having perished in the disasters
and turmoils that fell upon Sicily during the Middle Ages.

Who can say what far-reaching mathematical idea perished
when, in 212 B.c., Archimedes was brutally murdered by a
Roman soldier? The just and kindly King Hicro had died in
216 B.c., to be succeeded by his grandson Hieronymus. The
new king allied himself with Carthage, the African city-stage,
with which Rome was fighting the bitter Punic Wars,.Hi*
eronymus was murdered before he could see the mischicf’he
had done. Syracuse was attacked by 2 Roman army. 404 fleet
under a general named Marcellus. At first, we ate’told, the
Romans were held off, thanks largely to the meehanical sur-
prises prepared for their reception by Archimedes, now an old
man of seventy-five. Marcellus was fote'-(éd to withdraw his
troops for a time, but eventually he surpfised the Syracusans
while they were celebrating a festival*to Artcmis, the Greek
goddess of the moon and of the cﬁasé The city fell to the Ro-
mans, and, as was usual in such tases, the massacte of its in-
habitants began. ~

The Byzantine hlstonzm Tzetzes tells us that Archimedes
had drawn a diagra \11 the dust, despite the battle raging in
the city, and wasdquietly pondering over somec mathematical
problem. He saWw’a shadow fall over his diagram as a Roman
soldier appreaehied. “Stand away from my diagram,” cried the
agitated\dld mathematician. The answer he received was just
what might have been expected from an adherent to the
dog:t\rfiffe that might is right. As Alfred Whitehead has put it,

(“The death of Archimedes at the hands of a Roman soldier is

symbolical of a world change of the first magnitude. . . . No
Roman lost his life because he was absorbed in the contem-
plation of a mathematical diagram.”

Thus perished the greatest mathematician of antiquity,
possibly the greatest mathematician of all time, With the
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death of Archimedes, the Golden Age of Greek mathematics
comes to an abrupt end. Not for eighteen centuries—not, that
is, until the seventeenth century—was the torch lighted by
Archimedes to be rekindled almost simultaneously in England
and Germany.

. \\/\
O
&
.\{5\
N
)
P
N*
™
&
A
& & 7
'\\
A\
Ko
{4,
\O
/\
N
a3
N



CHAPTER I1I1

The Invention of Algebra

4 '\
NE of the oldest mathematical problems in the quld is
“Hau, its whole, its seventh, it makes nmf_;teen ¥ The
word “hau” is not, as might be supposed, a snoxt® bf surprised
disgust. It was the word used by the ancient\Egyptians for
any unknown quantity in a mathematical pm\blem Nowadays
we usuzlly use x or some other letter fropnthe end of the alpha-
bet instead of “hau.” Put into presqnt}dé.y English, the prob-
Iem may be stated as “There is & number such that if the
whole of it is added to one-seveﬁth of it, the resuit will be
nineteen.”

This problem is founddn the Ahmes papyrus, of which we
spoke on page 13. Singé this papyrus is a copy of an older one
written about 2200 B}E., the problem is more than 4000 years
old. Readers whe'would care to see the complicated steps by
which the problém is solved in the Ahmes papyrus will finda
full transl‘a.(i:t}rf of the Egyptian text in Volume IT of Dr, D. E.
Smith’%ﬂis}fory of Mathematics, a book that should be found
in evety reference library.

Those who are in the least familiar with modern algebra

\wﬂl at once recognize the problem as one that can quickly and

easily be solved from the equation x +-X 7= 19. Once the prob-
lem is translated into this symbolic, algebraic shorthand its
solution presents no difficulty, since, if x + % balances 19, then

63

N



C

:'\"

\ s
4

66 MAKERS OF MATHEMATICS

7 times the left hand quantity must balance 7 times the right
hand quantity. In other words, 7x + x {or 8x) must still
balance 133. If this is so, then one-eighth of 8x must alse
balance one-eighth of 133, so we find that x = 16§.

This modern method of solving the problem takes about one-
tenth of the time it takes merely to read through the solution
as given in the Ahmes papyrus. How does it come a,bqut that
we have this time- and labor-saving mathematical Eot){ called
modern symbolic algebra? There are three dastmet stages in
the story of its development. RO

(1) The kind of problems out of which 1t\grew were known

and studied from early Egyptiamntimeés. These problems
formed part of an abstract “seience of pumbers” that
was unknown to all but a sglect few who took delight in
the challenge it presented to their intellects. For thou-
sands of years the solution of a problem of this nature
would be written out like a piece of prose or a philosophi-
cal argument. 83
(2) The second stage commenced about the year a.p. 275
and exte};désl into the sixteenth century. In this stage,
solutiongwere still, in the main, written out like a piece
of ptose writing, but certain abbreviations were made
in some of the wrds etc, as we have abbreviated “words”
\emd “etcetera.” A symbol indicating subtraction was
L' ‘introduced, as were one or two other such symbols.
M3) The third stage is the one in which we now live. No
words or abbreviations of words are used in solving
problems, Instead, word-statements are translated into
a kind of mathematical shorthand, consisting of sym-
bols and signs. Once these symbols and signs are mas-
tered, a shorthand mathematical statement of this
nature can convey to the mathematician a meaning
that could only be expresscd by a word-statement of
considerable length and complexity. By means of alge-

NS
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braic symbolism a kind of “pattern” or mathematical
~ “machine tool” is provided, which guides the mind as
swiftly and unerringly to an objective as a jig guides a
cutting tool on a machine. This kind of algebra began to
be developed only some three or four hundred years ago,
and then only by gradual stages. Compared with the
thousands of years during which mathematical ideds
and processes have been growing in men’s minds, Ot
present-day algebra is only a recent development?"

It will be noticed that the first of these three stages.includes
the Golden Age of Greek mathematics. A great deahdf what is .
now called elementary algebra—and some not so-elementary—
was worked out through the medium of geomigtry by the bril-
liant mathematicians at whose work we“have glanced in
Chapter I1. Thus; bv the time Euclidiproduced the Elemenis,
the subjects of ratio and proportioh had been thoroughly
worked out geometrically, as had'alsb many facts that we now
express algebraically as identitiesl An “identity” is a special
kind of equation, in which hgth sides balance, no matter what
value may bhe represented by any literal number, or letter
representing a numbé€r) ‘that may occur in it. For example:
a(b + ¢) = ab -+ de> (a =+ b)? = a? 4 2ab + b% These, and
many other idepfities were proved originally by means of geo-
metric fighire$\dnd reasoning. Again, in the Elements, we find a
geometric ‘golution of what would now be called quadratic
equations-of the type x? + ax = a%, and x* = ab. The solution
is indieated, not by a number, but by a line. In the seventh

_and eighth books of the Elements, Euclid deals with what we
Jow call the Theory of Numbers, while in the ninth book he
provides a geometric treatment of series and progressions.
Book X deals with numbers (treated geometrically, of course)
which, as we shall shortly see, had baffled the Pythagoreans,
namely, those known as “irrational” numbers. This catalogue
of the contents of part of the Elements has been given to indi-

Q.
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cate the exient to which many concepts now classified as alge-
braic had their origin even in the geometry of Euclid, to say
nothing of the great store accumulated by later Greeks.

Long before the time of Euclid, the Pythagoreans had laid
the foundation of the Theory of Numbers. Nowadays this
branch of mathematics is not an easy one, but it is quite.easy
and interesting to find out some of the things the Pythagore-
ans discovered about numbers, apart from theiij,gfm}lge and
fanciful concepts of male and female, lucky, and uniucky,
divine and earthly, and so forth. RS

They called numbers such as 4, 9, 16 etd, “square numbers.”
Figure 30 explains what they had inymind in thus classifying
certain numbers {ignore the shadeglportions, for the moment).

e
. .l l'f" - .
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\ Fic. 30

) 9w notice some curious facts about these threé ‘“‘square
The first square number, 4, is equal to the sum of the first
two odd numbers. That is, 1 + 3 gives the square number
whose side is 2.

The next square number, 9, is equal to the sum of the first
three odd numbers. That is, 1 + 3 4- 5 gives the square
number whose side is 3.

The next square number, 16, is equal to the sum of the first

four odd numbers. Thatis, 1+ 34 54- 7 gives the squaré
number whose side is 4. '
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Now go a step further:
The sum of the first fwo odd numbers gives the square num-
"ber ‘‘tws times fwo,” that is, 4.
The sum of the first #hree odd numbers gives the square
number “three times three,” that is, 9.
The sum of the first fowr odd numbers gives the square
number “four times four,” that is, 16.
The above results suggest that, to pick any number at ha.zard\
the sum of the first fwo-kundred odd numbers would gwe Jthe
square number “fwo-hundred times fwo- hzmdred,”s ‘that is,
40,000. M\\

By algebraic reasoning it can be shown thabk # is a symbol
standing for any number, the sum (s) of £ &dirst 7 odd numbers
will be # times #. In other words, we say, algebraically, that
s = n% By means of this “algebraic, formula” we could find the
sum of, say, the first thousand odd numbers without adding
them or even writing them down "Here we have another simple
illustration of the way moderh algebraic symbolism saves time
and labor. We have her&a mathematical “machine tool,” the
formula s = n?, whi cﬁena,bles us to solve countless problems of
this nature withott thinking out each problem individually.

The Pythagéreans called certain numbers “triangular num-
bers.” Figm:é&l makes it clear why 3, 6 and 10 were so classi-
fied. :"“\.;’

No@ xiotice some curious facts connected with these three
tngngular numbers:

“\MThe sum of the first two numbers, 1 4 2, gives the first tri-

angular number, 3.

The sum of the first three numbers, 1 + 2 + 3, glves the

second triangular number, 6

The sum of the first four numbers, 1 -+ 2 + 3 + 4, gives the

third triangular number, 10. '
Now go a step further. Let us call each group of numbers like



Jo MAEKERS OF MATHEMATICS

1+ 2yor1+243,0or14 2+ 3+ 4, a “series,” and let us
call each number in each series a2 “term.”

Now take any one of the three “series” we have been con-
sidering. Multiply the sum, of the first and last terms in any one
of this kind of series by the number of terms in that series, then
divide this result by 2. You will find you have the triapgular
number that is equal to the sum of the terms in that sezids,

It can be shown algebraically that for any g;p\ﬁp})f con-

» “’}\\ . L
) . . ’,:\\' . . *
. . . * . Q . - » L
H2=3 1+2+3%5 1+243+4=10

"..:'“FIG. 31

secutive numbgrgz {not necessarily beginning with 1), if @
stands for thedirst number in the series, / for the last number,
and # for the number of terms in the series, then the sum
of all thése terms (S) can be obtained from the formula

(1 :
) ?\&T—), that is, half the answer obtained by finding #

) .zs'ﬁ\mes the sum of ¢ and /. Mathematicians call a series of this

o8 nature an arithmetic progression. Like many other mathemati-
\"\} ~ cal concepts, it is not really as awe-inspiring as it sounds. The
non-mathematical reader can see for himself how easy it is, say,

to find the sum of all the numbers commencing with 600 and

ending with 1400. The only point where he might trip up is in

finding the value of #. For instance: there are 3 terms in the

series 5, 6, 7. This number is one more than the difference be-
Yween the first and the last terms in the series.
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We have already begun to see how helpful the subject we
call modern algebra can be.

The Pythagoreans regarded fex as the “perfect” number.
Ten is the sum of 1, 2, 3 and 4. These numbers include the
ratios giving the musical intervals discovered by Pythagoras

or one of his followers. They were % (the octave), % (the fifth),

and % (the fourth). They also represented to this brotherhdog a '
point (1), a line (2), a triangle, or planc figure (3), and a’.fiyra.-

mid, or solid figure (4), thus: o\
c >
L —————tly
Point (1) Line (2) ) ,agéa"{S) Solid (4)
Fic.32

3

They associated certain{humbers with the various Signs of
the Zodiac, observing that'a certain number of stars made up a
shape which they QhBu\ght looked like a bull, another group of
stars a shape like an archer, and so on.

Thus it cangéyhbout that the Pythagoreans at first believed
that everyt\ﬁhfg in the universe was connected in some way
with a number which had something in common with every
otheshtmber. Thus, they believed that any two lengths must
h&vz\:s;ome definite length common to ¢ach. Thus, if a length of

\%‘fhches is divided into seven equal parts, and another length,
of § inches, is divided into ten equal parts, each of the seven
equal parts and the ten equal parts will be equal to each other.
In other words, 31 and 5 have a common measure 5. 1t had been
taken {or granted that any lengths (or the numbers represent-
ing thosc lengths) could be expressed in the same units, pro-
vided the process of subdivision were carried sufliciently far.



72 MAKERS OF MATBEMATICS

Then the Pythagoreans ran up against something very mys-
terious and baffling to them, and something that many people
still find difficult to understand, the first time they encounter
it. There is no common measure for the length of a side of a
square and the length of its diagonal. )

We saw in Chapter II that although they may not haive
known the general proof for the “theorem of Pythégoras,”
they must have known the special case, when theyright tri-
angle has its two shorter sides equal in length, :Lf:t us draw &
square, ABCD, having each side 1 inch long Now let us see
whether we can calculate the length of 1ts*&nagona1 AC, Tt is
useless to try and measure AC exacily. Ne drawing or measure-
-ment can be absolutely exact. K7,

Since ABCD is a square, each 01,\1:5 angles is a right angle.
So triangle ABC is a right tnangle If we now draw squares on
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AC, AB and CB, the sum of the two smaller squares will give
us the area of the largest square, the one on AC. Since the area
of a square is equal to its length times its breadth, the area of
each of the smaller squares will be 1 times 1, or 1 square inch.
So the area of the largest square, the one on AC, must be 2
square inches. Then what must be the length of the side AC of
this largest square? IZ must be @ number which, when multiplied
by itself, gives the answer 2. But no such number can be found:’

We know it must lie on the number-scale somewhere between
141 and 142, to use modern notation. Or we can gg.[urther,
- and say that it must lie somewbere on the number‘scale be-
tween 1-414 and 1'415; or further still and sayitJies somewhere
between 1'4142 and 14143, and so on indefinitely. If we con-
ceive of the number-scale as a straight line Which is marked off
in equal segments by the numbers 0,4,\2, 3. . . we can go on
subdividing that line into smaller ga;d“ sma]ler equal parts and
yet never get parts so small that, they will exactly represent the
number which, when multiplied by itself will give the answer 2.
All this profoundly shook ghe Pythagoreans. They had thought
that it was possible tossay exactly how many times one meas-
urement was greatet\’bhan another measurement. For instance,
if one line were 4¢imits long, and another line t such unit long,
the first line woulci be 4 times the second line, or, in other

4
words, thei'atm between the lines would be T But if, as 1t AOW

da“medbn the Pythagoreans, it was not possible to express the
le”&th ‘of the diagonal of a square in numbers, it would not be
{Pessible to compare that length with any other length. In

4
other words, 4fs length could not be expressed as a vabio, such as T

Nowadays, we call any number that can be expressed as a
53
27
any number that cannot be so expressed (such as the number

ratio (such as > 4-8 or %, and so on) a ratio-nal aumber;
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which when multiplied by itself gives 2) an ir-ratio-nal number,
“not ratio-nal number.”

So perturbed were the early Pythagoreans at this break-
down of their belief that all numbers have some common
measure, that it is believed they tried to hush up the puzzling
discovery and even threatened to punish with death the first
meruber of their brotherhood who gave away their disturbing
secret. Nearly 150 years passed after the death of Pythagoras
before the Greek mathematician Fudoxus f,mi.‘n‘d a way of
geometrically working problems that ingolvéd irrational
numbers. N

Nowadays we simply say that the Jength of AC in Figure
33 is “the square root of 2 inches,7ahd we write this as “4/2
inches.” The symbol 4/ is of comparatively recent origin. To
understand its origin we mus{ fifst see how the word “root”
came into mathematics. TheGteeks did not use the expression.
They spoke of the “sid&‘?lof a “square number.” Thus they
would call 3 the “sideof the square number 9; 4 the “side”
of the square numbgn16, and so on. As we have seen, the Arabs
obtained much z(?:fx\thcir mathematics from the Greeks. When,
however, thejuadopted the simple and convenient Hindu num-
ber symbdls) their own mathematical reasonin ¢ became based
to a gredier extent on “number” than on geometrical figures.
Thu&it"came about that instead of speaking of the “side” of
}QbEing 4, they dropped the geometrical notion of a square and

&

N nceived of a number as ¢ growing,” like a plant, out of a root.
% Thus, 16 was conceived of as “growing’ out of the “root” 4.

After a book by al-Khowarizmi on number-reckoning had
become known in Eurepe, European mathematicians took
over the Arab idea of a “root” and translated the Arabic word
by the Latin radix (compare “radish”; “radical,” one who, in
his own opinion at any rate, goes to the root of every problem)-

They also began to speak of exiracting or “dragging out” the
root rather than of JSinding it
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Toward the end of the Middle Ages, during the stage in
algebra’s development when abbreviations were being intro-
duced, this word radix was abbreviated to R, the symbol that
is st111 used as an abbreviation for “recipe” in a medical pre-
scription. Thus, B 25 was 5. About a century before the intro-
duction of printing we find a small r being written in place of ~
this R, thus, 125 = 5, and it is thought that our modern

“radical sign” +/" is simply a copy of the small letter r as writ-CN
ten by some copyist before printing was introduced. That i
why we now write “the square root of 2”7 as +/2. N

To return to the later Pythagoreans. They found tha:t there
were countless other numbers of the same type. 2§ /2 which
could not be expressed exactly in numbers. Thisgpplied to the

“side” of any number that was not a “squafenumber.”

There is an interesting story conngeted with the name
given by Greek mathematicians to nunthers like /2, 4/3, v/ 3,
and so on. Greek mathematicians u8ed the word logos, which
meant “a word” and also “the mind behind a word” for any
number that could be expressedas a ratio, such a number being
one that their minds could grasp. In fact, the Greek word for

“ratio” was logos. Any, m}mber like +/2, which, as we have
seen, cannot be expre d as a ratio between two mumbers,
was called ¢- logas that is, “not logos,” “not a ratio number.”
We must now jamp ahead about 1000 years in order to follow
Up the story ‘of a-logos. The Arab mathematician al-Kho-
warlzmi uﬁde use of an Arabic translation of the work of some
Greek mathematlua,n who naturally used the word a-loges in
itg, teéhmcal sense, as indicating “not ratio-nal.” Whoever
translated the work into Arabic took the word a-logos, in its
Primary instead of its technical sense, as meaning “without a
word,” and translated it by the Arabic word meaning “deaf.”
So al-Khowarizmi came to call numbers like 4/2, /3, etc. by
this Arabic werd. Some three hundred vears later the European
translator Gherado rendered into Latin a book written by al-
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Khowarizmi. He found certain numbers described in the
Arabic as “deaf,” so he translated this by the Latin surdus,
“deaf,” To this day we still call a number like V2 a “surd,”
with its meaningless reference to deafness.

The story of a-logos numbers has taken us for a moment into
the second stage of the story of algebra. Let us retrace{our
steps to the time of the Golden Age of Greek mathematics.

Greek mathematicians gave their Science of Numbers the
Greek word arithmétike, since orithmos meanty “fumber,”
techne, “science.”” We must not be misled by, o‘ur present use
of the word “arithmetic”” into supposing that" this arithmétiks
bad any connection originally with the gitnple number-reckon-
ing we now call by this name. Such\\}i;mber -reckoning was
known as legistic by the Greeks and\v. as considered by mathe-
maticians as unworthy of their study and attention, being con-
nected with the everyday caleulations that were made on an
abacus. Eventually, the fitle arithmetike, or arithmelica, as it
came to be written in-fhe Middle Ages, ceased to be used for
the “Science of Nuafibers,” being replaced, as we shall see, by
the Arabic word( al}ebm The title “Arithmetic” did not reap-
pear until théc\ghteenth century, when, strange to say, it no
longer stood for its old “‘superior” branch of mathematics, for
it was/then used for the once-despised logistic, or aumber-
reckorﬁng Since the eighteenth century the word “arith-

ti¢’” has been used thus, in the sense that it is used today.

K }:It is possible, though not cerfain, that this surprising change
“\* in the meaning of a word came about through a mistake re-
garding its derivetion, The word is sometimes found in the
eighteenth century as ars-meirice, as though it came from the
Latini ars, “art,)” metrice, “measuring,” instead of from the

Greek arithmos, techne, as we saw. Whatever may be the cor-

rect explanation of this surprising change in meaning, the

word is now always connected with the elementary and practi-
cal arf.of measure.

To return to the Greek mathematicians and their work-.
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During the five centuries that passed after Euclid wrote the
Flements, they began to work certain problems by using num-
bers rather than geometric figures. Most of these problems
were the kind we should now say lead to equations. It must be
remembered, however, that those who worked them had no
algebraic symbolism such as we have today, but wrote out
their solutions in words written in full. '

There is a famous collection of ancient Greek epigrams, of'y,
short poems that usually end in a witty phrase, called the
Greek Anihology. Among these epigrams are forty-six ‘fm;grﬁ"ber
problers,” some of them thought to have been writtenat’least
a thousand years before they were collected in the. Anthology
about A.D. 500. All these problems lead to onedihd of equation
or another. Here is one of them: \\

“One-third of a number of apples igobe given to one man,
one-eighth to a second man, one-foutth to a third man, one-
fifth to a fourth man; a fifth man's to get 10 of them, and a
sixth man only & of them. Howiiany apples will be required?”

If we let the symbol x stand for the unknown quantity,
that is, for the numberp{apples required, and use our modern
algebraic “shortha c&‘wc can at once transtate this problem

QY

into the eQua.tiO,ng + g + z + § 4+ 10+ 1 = x Thisis very

casily SOIVQcki;? ‘we multiply every term in the equation by 120,
the smallésf-humber that contains 3, 8, 4 and 5 exactly, or the
“IDWQS&Smmon multiple” of these numbers.
:gil.f'a- problem like this would be quite difficult if we did not
< '“hjﬂlfe our modern symbols and methods. Right up to the seven-
teenth century, problems like this were worked by methods
very similar to those set out in the Ahmes papyrus.

Let us glance back at the Egyptian problem we mentioned
on page 65. It is even easier than the one just quoted from the
Greek Anthology, but all the same, there is no easy way of solv-
ing it unless we use our modern symbols and methods.

Here in a brief outline is the ancient method by which the
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Egyptian problem would have been solved right up to the
seventeenth century. Bear in mind that our modern number-
symbols and methods of computation make it much easier
than it would have been before their introduction.

‘The Egyptian problem was to find a number such that if
that number is added to one-seventh of itself, the result, will
be 19. .

First, choose any number that seems to be likely to-fit some
of the given facts. In the Ahmes papyrus, the mimber 7 is
chosen. Now see whether this number fits in with ol the given
facts. Clearly, 7 will not do for the unknown(quantity, since if
you add 7 to one-seventh of itself yougétlonly 8, and not 19.
But 19 is 23 times as great as 8, so the'true value of the un-
known will be 2§ times as great ag the “false” answer 7 with
which we started the calculatioh, ) Now, 23 times 7 gives 16§,
the true value of the unknown quantity.

This method was knoww during the Middle Ages as the

" Rule of False Position 6r'simply the Rule of False. As late as

the middle of the sixtébnth century the following lines appear

in the Grounde of d¥ies, written by the English mathematician
Robert Recoq#@e’

OGesse at this woorke as happe doth leade.
NV By chaunce to truthe you may procede.
7 And firste woorke by the question,
’\\:“ ) Although no truthe therein be don.
Suche falsehode is so good a grounde,
That truth by it will soone by Sfounde.

"This method of solving an equation, by which a start is made
by supposing a number (you know is most probably false) to be
the true answer, was used until some three hundred years ago.
Try working the “apple problem” we mentioned just now by
this method, and see how long it takes,

We now pass on to the second stage in the story of algebra’s
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growth. Round about the year 4.p. 250, an Alexandrian mathe-
matician named Diophantus was flourishing. We do not know
when he was born, and we have scarcely any knowledge about
his personal life cxcept what is found in an epigram in the
Greek Anthology. This says that his boyhood lasted one-sixth
of his life; his beard grew after one-twelfth more; he married
after one-seventh more; his son was born 5 years later; the
son lived to half his father’s age, and the father died 4 year§" )
after his son. How old was Diophantus when he died? ¢

Since it would be interesting to know at least how 1ong this
mathematician lived, we had better work this problem, though
we shall not use the Rule of False employed by aiMose whao
calculated his age during the Middle Ages!

Let the symbol x represent the number of’ )m\ears Diophantus
lived, and let the 51gn ~. stand for “there&re ”

et +++~+i

Now multiply each term by 84 the Iowest commen muitiple of
all the denomlnators ~
. ldx 4 Tx 4 12@ A~ 420 + 42x-+ 336 = 84x
. 756 = 9x
\\ Lx =84
So, if the ep1gra.m s based on fact, we do at least know that
Diophantus lQr“e'd to a ripe old age.

During /thiese eighty-four years he won himself the title,
given long after his death, of “the father of algebra.” It is
difficalt to see how this claim can be substantiated. It is true
ihé:-t‘hé wrote a book, the Arithmetica, which is unquestionably

pe of the world’s greatest mathematical books. Some fourteen
centuries later, it was to help mould the mind of Fermat, one of
the greatest of French mathematicians. Originally, it con-
sisted of thirteen parts, like Euclid’s Elements, but only
Six of them have survived. It deals with number—problems
which lead to equations, some of them very difficult ones, in-
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volving what we now call quadratic, cubic and bi-gquadratic

equations, or equations involving the second, third, or fourth
power of the unknown. Many of these equations are “in-
determinate,” that is, they each consist of an equation which
contains more than one unknown. So thorough was Di-
ophantus in dealing with these indeterminate equations, that
they are still sometimes called “Diophantine.” But.all the
same, as has been pointed out by two of the.greatest au-
thorities on Greek mathematics, Dr. Nesselntann and Sir
Thomas Heath, Diophantus was by no meais the first mathe-
matician to work equations such as thesé, Nor can it be said
that the methods he employed were.responsibie for modern
algebraic technique; this was not dgveloped unti] fifteen hun-
dred years after his time. L&

The great, outstanding chaxaeteristic of modern algebra is
that it provides mathematicians with a simple, concise lan-
guage, in shorthand formi) in which to express and clarify
mathematical concgpié "and processes. This mathematical
shorthand makes uge of symbols and signs which have no out-
ward connectipny, 50 far as their appearance goes, with the
words or tHifigy they represent. It can be mastered with far
less straimvon the memory than can the shorthand used by a
stenographer, yet it enables those who understand it to state
and-gelve problems without using any ordinary words, except
fotam occasional connecting word such as “‘since” or “there-

L 30re.” Important though the work of Diophantus was, it can-

N\ % ‘not be said that he invented such a system, thoy gh this claim

is often made on his behalf. The so-called symbols used by
him were merely abbreviations, which entirely lack the un-
limited “generality” and power of our modern symbols,

As we have seen, there are three distinct stages in the story
o.f the evolution of algebra. The first stage extended from the
tme of the ancient Egyptians to that of Diophantus, around
AD. 250. In this stage, the solution of a problem was written
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out in words and sentences in full, like a piece of prose, or a
philosophical argument. During the last four centuries of this
first stage in the development of arithmetike, Greek mathema-
ticians came to use the word arithmos (the Greek word for

“number”) for the unknown quantity in a problem, writing
the word in full, where we should use a symbol like x.

Diophantus apparently grew weary of repeatedly writln,g
the word arithmos for an unknown quantity; he abbrewat*ed‘lt
to its first two letters, a, r, writing them, of course, in Greek as
ep. Having to write this abbreviation thousands of ~t1mes in
course of time he merged the letters into ¢p, then(ifito 2, and
finally into {. [This is the theory put forward\bySir Thomas
Heath. Tt is not accepted by all historians df mathematics.}

Similarly, when Diophantus wanted totindicate “arithmos
times arithmos,” or, as we should sayjthe square of the un-
known he wrote the first two Iettcrs 6f the Creck word duna-

“power” (compare “dynamite,” “dynamics,” “dynamo”),
smce he evidently regarded &&gPithmos times arithmos’ as be-
ing more powerful than amtkmas by itself. The Greek Capllal
letters D, U are AT, 50 he wrote the abbreviation A*, Thus, in
his book, AT simply‘migans ¢ times ¢, or, as we should now
say, if x is the unknown quantity, A" meant x%.

Again, singe{the volume of a cube is its lepgth times its
breadth tigres-its height, and since, in a cube, all these three
measurements are equal, he called “arithmos times arithnios
times G4 Timos” the “cube of arithmos,” just as we do today
S}I.lﬁe. the Greek word for “cube” was KTBOZ when written in
(apitals, he abbreviated it to K.

' Nowadays, we call x? either “x squared” or “the sccond
Power of x.” In this alternative expression we copy the lead
given by Diophantus. But we now go further than he did,
for we call 8 not only “x cubed’ but alse “the third power of
¥ x4 “the fourth power of x,” and so on. Moreover, nowadays,
fone of these expressions is limited to the unknown quantity;

Q"



82 MAKERS OF MATHEMATICS

they can all be applied to any number or literal number, by
which we mean any letter that stands in place of some number
in an algebraic expression.

Up to the time of Dlopha.ntus, the only way the Greeks had
of writing “10 — 1,” or “ten minus one” was ¢ Aamoif a.
The Greek word connecting the Greek letters for 10 and{I\s
leipsis, “lacking.” Once more, Diophantus abbreviated,, writ-
ing merely the first letter of this word, the (capl’esxl) Greek
LA, To indicate that it was an abbreviation, be put a stroke
through it, and thus obtained a sign A, to indicate subtraction.
So where we should write “10 — 1 he @Guid write ¢ A a.
We must not imagine that Diophantug\thus invented a sign
which corresponded completely to 0111\\.nodem minus sign. He
could write the equivalent of “1Q o 1,” but “1 — 10” would
have been meaningless to him{ It was not until some fifteen
centuries after the time of Dlophantus that the concept of
positive and negatwe qurmtltles entered mathematics and
thus gave meaning to 3n expression such as “1 — 10.”" This
concept will be di ussed later in this chapter.

We now must §ce how it came about that the word “algebra”
came to be ’sh‘bstituted for “arithmetica” as the title for the
Science ofsNémbers. The Arab maihematician al-Khowarizmi,
in addition to writing a book on Hindu-Arabic number sym-
bols, wrote another book on the treatment of equations, basing
ﬁon the work of Greek mathematicians, He chose five Arabic

words for its t1tle, al jabr w' al muguabalah, “the reunion and
" the opposition.” These words referred to the two main prOC—
esses employed in solving “equation” problems, “reunion”
being presumably the bringing together of terms involving the
unknown quantity; “opposition” the final stage, when a “ree
united” unknown quantity was faced by some number. Thus,
to give a very simple illustration, if “threc times a certain
quantity added to half that quantity is equal to 7" we “‘re-
unite” “threc times an unknown” with “half the unknown,”
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getting “33 times the unknown” and then “oppose” it to 7,

7
getting, as we should say, —2:5 = 7. Scholars differ, however, as

1o the exact significance of these terms.
The book was translated into Latin under the awe-inspiring
title of Ludus algebrae et almucgrabalesque (“The school of

al-jabr and al-muquabalah”). Fortunately, this fearsome title,
was eventually reduced to our familiar word “algebra.” 11;\’1@ s

strange that an Arabic word should have taken the place of\the
long-established Greek word arithmétike, or its Latir equiv-
alent arithmetica. Although Arab mathematiclans{tfansiated
the works of Diophantus and other Greeks isouArabic and
studied them thoroughly, they themselves co\m;;*ibuted nothing
new or original to the subject. RS

It is interesting to see how this Awabic word al-jabr also
found its way into Europe through, thé"Moors who conquered
Spain. There, for centuries, it Was used in a distinctly un-
matherratical connection. Mathematics certainly plays a very
essential part in everyday life, but even thc most ardent
mathematician would hesitate before declaring that it could
mend broken bonesl\Yé’t in Spain during the Middle Ages it
was usual for a batber to call himself an algebrisia, or bone-
setter, since medieval barbers undertook bone-setting (and
bloodletting) a8 a sideline to their regular business. Even as
late as | G5, when Shakespeare was a baby of one year, an
English %riter} J. Halle, told his readers, “This Araby worde
Algebra sygnifyeth as well fractures of bones as sometyme the

{Festauration of the same.” If the reader will recollect the mean-
g of “al-jabr,” he will see its connection with the “restaura-
tion”” of broken hones.

During the Middle Ages, at least three Latin translations of
al-Khowarizmi’s work on algebra were made in Europe. One
was by the well-known translator Gherado, anotber by an
Englishman, Robert of Chester. An English translation of the

Q!
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latter’s Latin version of ol jabr w' al muquabalah was made in

1915 by L. C. Karpinski and may be seen in large reference

libraries. :

The years from about 800 to about 1450, known as the
Middle Ages, were marked by an almost complete stagnation
of independent thought, which paralyzed mathematical p?og-
ress and cast its gloom over European mathematicians as
over all other thinkers. A gleam of mathematical dight did in-
deed appear about 1200, when Leonardo Fibonagcei (“the son
of Bonacci””) wrote a book on algebra and the Hindu-Arabic
number symbols. Fibonacci was born a${Pjsa in North Ttaly,
but was educated in North Africa, witere his father was in
charge of a custom-house. He natupally became acquainted
carly in life with the Arabic nume;”hs, and in 1202 he published
a book on al-Khowatizmi’s ¢l4jdbr 2’ el mugquabalak in which
he explained the Arab number-symbols and pointed out their
great advantages over Roman numerals, as well as discussing
“algebra.” Fibonacci talculated the value of = as lying between
31410 and 3 14270 use modern notation, a somewhat closer
approximati%(tﬁan that made by Archimedes. He also at-
tempted to, explain the meaning of an expression such as “5
diminisked by 8" which he regarded asa “debt of 3,” one of the
first.Attempts to find a meaning for what would nowadays be
caliéd a negative number. He also made use of the develop-

& %énts made by the Arabs in trigonometry, with which we shall
% ‘deal in a later chapter.

This gleam of light, however, soon flickered out, and it was
not until about the middle of the sixteenth century, in 1545
to be exact, that the darkness of medieval mathematics began
to be dispelled into what was eventually to become a blaze of
light surpassing by far even that of the Golden Age of Greek
mathematics. From the days of Archimedes to the middle of
ihe fifteenth century very little real advance in mathematical
knowledge took place; then, almost overnight, it began to
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blossom forth. Between the years 1600 and 1700 the vast
modern development of mathematics really got under way,
and has continued ever since. How can this sudden reawaken-
ing be explained? To understand how it came about we must
digress and glance at certain historical events that took place
in Europe.

The second half of the fifteenth century saw the beginning

of a period which was to mark the transition from the Midgle, ™~

Ages to modern times. It is known as the Renaissance Perwd
or the period of the re-birth of independent thought and fearn-
ing. Four events, in particular, though widely separated from
each other at first sight, led to this emergence fxdgt the intel-
lectual darkness of medievalism. NV

The first of these events was the capturéo‘f Constantinople
by the Turks in 1453, When Angles, S‘amns Franks, Goths
and other Teutonic tribes had burst jnto the Roman Empire
during the fourth and fifth centunes, those of them who at-
tacked the eastern part of thafiémpire, which had the city of
Constantinople as its capitalyhad been driven back.

In this city, founded{ ln\AD 330 by the Roman Emperor
Constantine on the mt\hi Byzantium, the culture and learning
inherited by the Rénians from the Greeks had been kept alive
all through the/Middle Ages. Tts scholars had access to price-
less Greek do&ments preserved in its well-stocked libraries,
from Onc}\)fﬂvhmh an Arab caliph had secured a copy of Eu-
clid’s Eifmm,fs, ag we saw in Chapter II.

Eot 'more than a thousand years after its foundation
'Consta.ntmople had repelled invader after invader; its history
durmg this period may almost be said to be a record of its
sieges. But in 1453 the city that had so often stood firm before
invaders finally fell before the attacks of Turkish hordes. Its
fapture produced great repercussions, hoth practical and intel-
lectual, in Western Europe. :

D‘ll‘mg the Middle Ages, Constantinople had become the
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greatest commercial city in the world, being the gateway be-
tween liast and West, That gateway was now closed, but an-
other and greater was soon to be opened, while, in searching
for it, a New Wosld was to be discovered which was to change
the course of history. _ ~

Some time during the fourteenth century, the Chinese
discovery of the magnetic needle, and its application’in the
form of a crude mariners’ compass had been intfoduced into
Europe. No longer were seamen compelled té remain within
sight of some coastline; trusting in the naysterious force we
call maguetism, they now boldly headsd\Eheir ships into the
open seas. RN

In this connection, the world oy(és\much to the enlightened
foresight of an unusual type oppuince. Unlike most of his kind
he actually preferred to spend.His life encouraging exploration
and navigation rather than in slaughtering and robbing his
fellow men. AlthoughunVited alike by the Pope, the Emperor
and the King of Fngland to take command of their armies,
Prince Henry thesNavigator of Portugal preferred to live on
the rocky proméntory of Sagres, in the extreme southwestern
point of Portugal, in order that he might study mathematics
and astyohomy, thereby developing the sciences of navigation
apdmap-making. To encourage exploration he made use of the

Wery large revenues that were at his disposal, attracting the
R\ “boldest and most skillful navigators in the world for the expe-
\" ditions he organized. His main object was to find an overseas

route to India by sailing around the continent of Africa. After
the fall of Constantinople his efforts were redoubled, but it
was not until after his death that his life-work was crowned
with success. On July 8, 1497, Vasco da Gama sailed from
Lisbon, sighted Nafal on Christmas day (hence the name
‘-‘Natal”), and finally reached India on May 20th the follow-
g year. . '

Before this great voyage had taken place, Europe had been
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amazed and stirred by the discovery of the New World. On
August 13, 1476, a young Genoese seaman of Spanish-]Jewish
descent swam ashore near Prince Henry's promontory of
Sagres, after his corsair-ship had been sunk in a sea-fight. The
young corsair, then aged twenty-five, remained for many
years in Portugal, where he mastered the art of map-making,
and became fired by the spirit of discovery that was than stir- A
ring Portuguese seamen and merchants. His name was Chris-\"%
topher Columbus. The momentous voyage of the Sania Maria,
" Nifia and Pinia in 1492 was to play a great part in stimuiating
and broadening men’s minds, and to pave the quffdr new
discoveries, not only of land and water, but also oftheintellect.
The third event which led to freedom from. the fetters of
medievalism also stemmed from the fall of\Constantinople.
This was the expulsiont and flight of themany scholars who
lived in that city, large numbers of them finding refuge and
hospitality in Italy. They came io.& Furope whose institutions,
that had dominated men throughout the Middle Ages, were
now decayed and discredited,¥The soil was ready for the de-
velopment of what was Best in medieval thought in the light
of what was best in t‘;ﬁs\thought of ancient Greece. Aided by
these exiled scholazand their priceless manuscripts, Europe-
ans began to rediscover “the glory that was Greece.” In doing
this, they dgxﬂélhped a newborn confidence in their own powers
and facql\tks"of independent thought. Thus came about what
is knowmids the revival of learning.
) IR revival of learning was in turn greatly accelerated by a
fourth event that occurred during ihe latter years of the fif-
teenth ‘century. This was the introduction of printing into
Europe. The vast power of the printing press, combined with
the substitution of paper in place of expensive parchment, ted
0 an enormous increase in the number of books that could be
distributed, and also to a corresponding decrease in their cc::st.
Having thus briefly glanced at the great and far-reaching
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changes that were taking place in Europe around the year
1500, we are now in a better position to understand the reason
why a flood of new mathematical ideas and inventions soon
set in, a flood on whosc broad waters now sail the proud ships
Science, Engineering and Aeronautics.

The first ripple of that flood may be seen occurring in 1545
In Northern Italy, on the Ticino River stands the ancient city
of Pavia. After the fall of the Roman Empire, sadked and
ravaged again and again—by Attila and his Huts\in the fifth
century, by Lombards and Franks in the eighth, by Magyars
in the tenth—the city had yet risen agaitniand again from its
ashces.

In 1501, a boy named Girolamo C\rdan was born in that
city, the illegitimate son of a iedmhed lawyer. The boy was
destined to achieve fame—or netoricty—as mathematician,
physician, astrologer, sc1ennsf gambler and breaker of his
word. He became a studenf at the University of Pavia but
finished his course at,,Padua where he was graduated in medi-
cine. His early efiofts to huild up a medical practice were so
unsuccessful that'he and his wife were forced to seek refuge in
the poorhouse. Then fortune smiled on him; he was able to
cure the Ll'\ll[d of & senator from Milan. As a mark of gratitude,
the senatdr persuaded the authorities to let Cardan practice
as a-physician, permission having previously been refused on
gecolint of his illegitimate birth. Once installed in Milan as a

3 physmlan however, he spent so much time in gambling and in
) interests outside his profession that his practice suffered. How-

ever, he was again smiled on by fortune when he received the
appointment of a professorship of medicine at Padua.
Cardan’s interests, as has been said, were far from being
restricted to medicine. He began to write about mathematics,
and this interest led him into correspondence with a mathe-
matician named Niccolo Fontana, better known as Tarfaglia,
“the stammerer.” Tartaglia was born at Brescia in 1500.
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Twelve years later, when the French captured the town, many
of its inhabitants, including Tartaglia’s father, were massacred
in the cathedral. Young Niccolo was left for dead, but his
mother managed to force her way into the charnel-house of a
cathedral and carry away his mutilated body. His skull, jaws
and palate were split open, but eventually his life was saved by
his devoted mother, though he stammered for the rest of his
days, owing to his injured palate. So poor were Tartaglia and \
his mother that he had to make use of tombstones as slates on
which to work -exercises from a book he managed to gbtain.
Despite the handicap of such poverty—or perhaps op decount
of its stimulus—he educated himself to such good &ffect that
eventually he became a lecturer, and then, @ professor at
Venice. While there he discovered a method ‘@bsolving a cubic
equation, or equation such as 3% + ax®%)b, where a and b
represent constants. It was customaryin his day for mathe-
maticians to challenge other math¢maticians to solve various
problems. When Tartaglia annotthced that he could solve an
equation like x® + ax? = ba he ‘was challenged to a contest
with an obscure pcr;son.(_:é;]]ed Fiore. Fach was to draw up
thirty problerns and hanttthe list to his opponent. Whichever
of them solved the'greater number of problems within thirty
days was to reecive a sum of money deposited with a lawyer.
Tartaglia wagypresented with a group of cubic equations, for
whose solufior, unknown to his opponent, he had discovered a
general fule. In less than two hours be solved all his opponent’s
Pfo}ﬂ\ﬁﬁ's, while his opponent failed to solve any of those drawn
Ap\by Tartaglia.

For some time, Tartaglia kept his method for solving cubic
equations to himself, but after much persuasion he disclosed
it to Cardan, who solemaly promised not to reveal his sccret.

Some years later, to Tartaglia’s understandable amazement
and indignation, Cardan.revealed Tartaglia’s method of solu-
tion in a book called the Ars Magna, published at Nuremberg
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in 1545. A long and bitter dispute resulted. There can be no
question that Cardan broke his solemn promise, even though
in his book he gave Tartaglia credit for the part he had played
in the matter. This will not be the last bitter and undignified
quarrel between mathematicians that we shall encounter.

The Ars Magna, besides dealing with the solution of Cubic
equations, is a comprehensive treatment of the algebra known
in Cardan’s day. It was the first book to recognizé what we
now call negative roots of an equation, and'ﬂ;'e\ first to set
forth clearly the idea of negative numbers, #\subject we shall
deal with later in this chapter. The book-tay be regarded as
marking the beginning of a new era inmathematics, although
it was not written in modern algebraie’symbolism.

Today, we remember Cardan principally on account of his
method for solving cubic equations, suggested by Tartaglia.
In his own day he gained greater renown by a curious book he
wrote on astrology. In the Middle Ages this subject was con-
sidered as unquestiondbly scientific. Tn many European uni-
versities of the fift€enth century the only mathematics taught
was connected(With this subject, although at Oxford, as-
tronomy a{.t&\hot astrology was required, as well as a knowl-
edge of thgﬁxst two books of Euclid. We shall find that many
extremely’ capable and briliant mathematicians regarded
astrolegy as a subject worthy of serious study right up to the

®ighteenth century. In England, Swift gave astrology its

4

eath-blow in a famous parody he wrote in 1708 entitled “A

v Prediction for the Year 1708, by Isaac Bickerstaff, Esq.” But

in Cardan’s day, astrology was treated with respect and awe.
Cardan’s unscrupulous character is shown by the way he
changed the birthday of Luther, whom he bated, in order to be
able to give him an unfavorable horoscope.

This extraordinary man Cardan also wrote two books on
nfxtura.l science, both of them very widely read in his day. His
views appear fantastic nowadays, but all the same he seems to
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have recognized the existence of a natural law behind nature.

Doubtless it was the renown he gained from his writings
rather than any be may have enjoyed from his medical work
that brought him to the notice of no less exalted a personage
than Archbishop Hamilton of St. Andrews, Scotland. The arch-
bishop was believed to be suffering from consumption, and
Cardan was called in to give him treatment, on the strength
of a statement—afterwards admitted by him to be false—that{
he could cure this complaint, Fortunately for the archbishop,
and also for Cardan’s reputation, it turned out that he was hot
suffering from this complaint. On his way home from Stetland,
Cardan was received in London by the youthful King Edward
VI, whose horoscope he obligingly cast. Unfertunately, his
(doubtless) comforting and tactful predictighs for the bright
and prosperous future of His Royal Highifiess were upset quite
considerably by the much-to-be-lamenteéd death of His Maj-
esty the very next year. N

After this pleasant interludglof curing an archbishop of 2
disease from which he wasnotsufiering, and showing his skitl
in reading the stars, Capdah’s own star appears to have ceased
o be in the ascend ti\Tﬁe rest of his life proved to be a series
of disasters. His nawe ‘was disgraced by his sons, one of whom
was executed fof/murder; he gave way more and more to his
mania for gambling; his mind became deranged; he lost his
professosshiip; and, after lingering on for several years on &
pension{¥or some unaccountable reason granted him by the
Pope,the died in 1576, leaving behind him scores of manu-

£setipts, less than a fifth of which have ever been printed. Our

Wierest in Cardan les not so much in what he actually
achieved as a mathematician, but rather in the way in which
ke prepared the ground for later discoveries which have ob-
scured his own work.

Cardan’s many-sided interests—ignoring the disreputable
oues—are typical of many of the great mathematicians whom
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we shall meet in later chapters. Until the beginning of the
nineteenth century, if not later, it was possible for one and the
same man to keep abreast of—and, indeed, often initiate—
new developments in both mathematics and science. Some of
them were even able to add philosophy and theology to the
list of subjects in which they excelled. Today, so vast/is the
field, and so highly specialized bave the higher branthes of
mathematics and science become, that no man can 'thpe to be
an expert outside his own limited field of inqt}iry. Today, no
man can hope to know even “a litile of everything, and every-
thing of something’ concerning mathematiés and science.

We have now reached the third and\lest stage in our story
of algebra’s development: the growth of modemn algebraic
symbolism. We must now glanée®at the first fruits of the
awakening of independent thowght as shown in the work of a
veritable host of mathema,tig:iﬁns. Fortunately for the reader,
it will not be necessary £d Mention all their names, since their
individual contributiens’ were often not very great, though
their cumulative gentribution has given us our powerful alge-
braic symbolismwhich has revolutionized many branches of
mathematicg{ ™ '

Instead'of drawing up a list of modern algebraic symbols and
concepts,and dealing with each in turn, it will be more inter-
estingif we choose a few actual examples of equations as they

gé“m written in books of the sixtecnth and seventeenth cen-

ries, and discuss the symbols, etc., as they occur. These ex-

..\3 .* amples are taken from a long list given in Dr. D. E. Smith’s

“~\J
Y

monuwental History of M athematics, Volume I1, pages 427~

. 431, which should be consulted by the reader who wishes to

have further details regarding authorship, title of book, etc.

First, et us glance at the following apparently cryptic
statement, which is simply an equation written in 1559.

Let us decipher all this. First, look at the Greek letter p
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(rbo). ‘This is a symbhol for the unknown, corresponding to the
¢ symbol of Diophantus and our modern “x.”

Now notice the diamond-shaped symbol ¢. This indicates
the symbol A" used by Diophantus, and corresponds to our

10P6pPaliQPapP 24

Fiz. 34 .
O\
modern x%, when indicating the second power of the unk.n?)wn
quantity. N

The symbol that looks like part of a square: racket [,is

thought to be an invention of thls writer. J¥éstands for our
“equals” sign.

The reader can guess the meaning of thg\P that occurs four
times. It stands for the first letter ofythe & Latin word plus, and,
of course, corresponds to our symbol ~}, indicating the opera-
tion of addition.

So instead of the cryptict statement in Flgure 34 we can
write 1x% -+ 6x + 9 = 1x P 3x + 24, or, since “one x*’ is
equally well indicated{simply by *“x*” this can be written
¥ 6x4+.9=x ?x+24

Our next examplc is taken from an Italian book written in
1572. Here it \5

R :.\ - 16 p. 8% ogual 3 20

. ~\ F1e. 35
\ }'Iere we find no sign for “equals” but the words eguale a
\ written in full. But here you will notice a big step forward has -
been taken toward our modern symbolism. This writer has al-
most invented our modern procedure of wriling the same lelier
with different exponents to indicate different powers of the vn-
Enoton, mstead of using entirely dqﬁerent symbols for differend
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powers, as we saw was done by Diophantus and right up to
1559 (see Figure 34). In the above equation, & stands for our
x%: & for our x°. Elsewhere, this writer uses \s for x, the un-
known (if we wanted to write x with an exponent we should
write x'); \& stands for 3%, and so on. )

So Figure 35 simply represents the equation x% + 8x>'< 20.

Now consider a third example, written by a French{mathe-
matician in 1629: O

1(4) + 35(2) + 24 = 10(3) + 36{0)

Vou will notice at once that we now hay@pur modern +
sign indicating the operation of addition Tq'indicatc that one
number was to be added to another, wweiters in the Middle
Ages sometimes used the Latin word@(*‘and”), as in “5 et 8.”
Instead of “et,” the symbol or ligafure “&” would sometimes
be written. If this symbol is whitten by hand quickly it easily
becomes <, which we now-Wtiie as -t-. This sign +, however,
did not originate in conmection with mathematics. It was used
by merchants until_the fifteenth century, when mathemati-
cians first began 16 employ it. Previously, it was a sign used in

- warehouses tgdndicate excess. Thus, if a bale of goods was 2

(pounds, op.whatever it may have been) overweight, and its
cotrect. W\E.‘lght should have been 15 pounds, the mark “15 -+ 2”
would be written on the bale.
Sedendly, it will be seen that this equation has the “equals”
sign =. We can fix the exact date when this sign was first used.

A \In a book entitled Whetstone of witte, the first algebra book

e A

written in English (1557), its author, Robert Recorde, €X-
plains that he bas invented the symbol = “bicause noe 2
thynges can be moare equalle.” This Robert Recorde studied
at both Oxford and Cambridge, taking a degree in medicine at
the latter university in-1545. Later, he became physician to
Edward IV and to Queen Mary, while he held a government
post in Ireland at some time during his career. The Whetsiotie
of wille closes dramatically with the following dialogue:
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Master: But barke, what meaneth that hastie knockyng at
the doore?
Scholar: It is a messenger.
Master: What is the message; tell me in mine eare. Yea, sir,
is that the matter. Then is there noe remedie but
that I must neglect all studies and teaching, for to
withstande those daungers. My fortune is not so
good, to have been quietly permitted to rest but a O
little loger. O
Recorde was taken away and died in prison—some say(for
debt, others, on account of complaints on his conduct 1{1{&1 in
Treland. Q
To return to our equation written in 1629. ’l\‘he numbers
written in parentheses stand for exponents indicating various
powers of the unknown. Sometimes circles were used instead of
parentheses. So the equation is simply | ™
xt - 35x2 + 24 = 1085 50x.
Now let us look at an equation,ritten by the great French
mathematician Descartes in 1637, There are several points of
interest here. Descartes wgot:é :

¥y R %y-l- ay — ac

The symbol b Wa;s';'silways used by Descartes for “eguals,”
Recorde’s symbol™= not having been everywhere adopted in
the seventeer@"}\x‘éentury. Descartes’ symbol was often used in
hiS da_y_ . s\

Thetext point to notice is the use of a sign for minus, the

finy Word meaning “‘smaller,” to indicate the operation of
subtraction. The origin of the minus sign — is not known. Tt
was used by merchants to indicate a deficiency long before it
was used by mathematicians. Thus, “8 — 37 written on a bale
would indicate a deficiency of 3 (yards, or whatever it might
be). Clearly, no merchant would be likely to come across the
puzeling statement “3 — 8”1 This would indicate that the
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bale contained material that was 8 yards short of the correct
length of 3 yards, which just doesn’t make sense. But mathe-
maticians from very early times ran up aga,mst statements like
this in their process of solving “equation’” problems. For
centuries they ignored such statements as being absurd. Like
the merchant, being accustomed only to the primitive nunther-
scale 1, 2, 3,4, 5 . . . they were at a loss to explain shch a
statement. In the Aﬂtkmtwa of Diophantus the eguation (in
modern symbols) 4x + 20 = 4 is curtly dismissed as™“absurd, ”
since no number on the only number-scale' Enown to Di-
ophantus would serve for the value of the unknown x. Beforea
statement like “3 — 87 could have ‘any meaning, another
mathematical concept bad to be invented: the idea of direction
on the number-scale. We shall dedl With this aspect of manus
(and of plus) later in this chapter. All through mathematics
we find one generation labelig some idea as “absurd” just be-
cause i doesn’t make senéé ‘to them. A few generations later,
the same idea is accepted as obvious. All that bas happened is
that some bright ifflividual has thought out some new line of
approach to the’ p}oblem and perhaps invented some mathe-
matical deviéesthat makes it all crystal clear. Maybe our
grandchildrén will smilc in kindly incredulity when they read
that ohl§’/a few extremely skilled individuals really under-
stood Einstein’s theory of relativity in 1949. As we shall see,
E‘{@n the great Descartes labeled some numbers as “imag-
\\inary.” Today, those numbers are no more imaginary than the
" bread and butter they earn for electricians.

To return to Descartes’ equation,

CY
Yy }°Cy—§y+ay—ac

Tt will be seen that he uses more than one letter, in fact, he
uses no fewer than five letters, y, c, b, x, and a. Each of these
letters is a “literal number,” or symbol standing for some
number. This form of symbolism had been introduced about
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1590 by Vieta, whose work wilt shortly be discussed. It is
customary, though not an invariable rule, to use one or more
of the letters at the end of the alphabet for the unknown(s),
and other letters of the alphabet for numbers, which, in any
particular problem, would be known. Consider, for example,
the equation s = n?. This equation, as we saw, is a “pattern,”
or jormula, which enables us to find an unknown quantity s, .
if we know the value which the literal number n represents in < )
some particular instance, On page 69 we saw how this formula
enables us fo find the sum of any series of odd numbers <om-
mencing with 1. The unknown quantity is s, the requifetl sum.
The symbol n? merely tells us that, to find s, we must multiply
by itself the number of terms (n) in the series:v@ are consider-
ing. The literal number n is understood 6 kave a kind of
“elastic”” value, being able to represent @y number, great or
small, in any particular problem. Thauks to this symbolism,
algebra now supplies us with innymérable mathematical “ma-
chine tools” like this formula s 2n’. As has already been said,
they guide our minds in workihg problems which, without their
aid, might be cumbersome;"]éborious, and sometimes insoluble,
It will be noticed tHap Descartes does not make usc of the
exponent 2 in ordeffo indicate ““y times y,” or the second
power of y. He shitply writes two ¥'s together. Here we have
one of the eq@i«}sf examples of the modern procedure for indi-
cating thaf\Mwo literal numbers are to be multiplied together.
They arf’;.: simply written together, without any intervening +
O ~—$igh. Thus, a times b is written as ab. Note that this alge-
5zaig method is entirely diff crent from the arithmetic method.
Although ¢p means ¢ times p, yet 56 does not mean 5 times 6,
since we understand that whencver we use Hindu-Arabic
number symbols they represent counters on an abacus and
that therefore 56 means 5 tens added to 6 units. Again, al-

tbough 3% means 3 -+ %, the algebraic cp can only mean <
timeg p-
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Descartes’ method of indicating y times y by the éxpression
vy, instead of the modern y?, was often used until a couple of
centuries ago. In American colleges in the eighteenth century,
x? was written as xx, X° as Xxx.

Let us now see how mathematicians overcame the difficulty
that caused Diophantus to declare that the equation.4x -+
20 = 4 was “absurd.” We shall see that the difficulty‘lay, not
with the equation, but with the inability of the primitive
number-scale to bandle any but numbers startiig with zero
and continuing through 1, 2, 3, 4 . . . inéan\endless series.
After being dubbed “absurd” for thousands of years, equations
like the one just quoted at last came into their own, as mathe-
maticians slowly came to realize tk\at in many problems, the
essential idea is not merely mag:@tude but the order in which
things lie. If the non-mathemaiically-minded reader will bear
with an example that looks patticularly trivial and childish, he
may quickly grasp the,idea.'of the new concept that was intro-
duced into the pmmt}Ve number-scale. By this new concept,
the ideas of diresijon and relative position were linked to the
number- sca.lf:z wtuch was now extended into one having #0
beginning s{\Well as no end.

Imagine we are among a crowd of onlookers watching a large
hotel ‘oh fire. We hear a cry of distress. We see a would-be
resgher emerge from a sixth floor window on to the fire escape.
e Tushes up 18 steps, peers through a window, evidently sees

R\ \ nothing, and then climbs down 5 steps to look in at another

window. Here we shall Icave him, since, as mathematicians, we
are, of course, supposed to be interested only in calculations.

Even a small child would know that the would-be rescuer is
now 13 steps above his starting point. How would he know
this? By working the calculation 18 — 5 = 13. Like Di-
ophantus, he would say that the minus sign shows that 5 is t0
be subtracted from 18.

But there is another, and quite different interpretation pos-
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gible. The facts we have considered make it clear that in the
statement 18 — 5 = 13, the number 18 indicates an upward
movement in this particular problem, and the number § a
downward movement. So ke tninus sign may be regarded as
indicating that the number following it is to be measured in a
direction exactly opposite to that indicated by the number 18.

How would this idea have worked if our would-be rescuer &
had run 5 steps up and then 18 steps down the fire escape?,
We should have indicated these movements by writing 5 =18
This gives us the kind of problem that baffled ancient'mathe-
maticians. Qbviously, if minus can only indicate s:ubtraction,
we, too, must remain baffled. But since we have'dgreed that a
minus sign also indicates a change of direction; the statement
makes sense, since it tells us that the c]jmbh},'having gone up 5
steps, then took 18 steps in the opposiie direction. But can there
be any answer to “5 — 1877 O

Well, let the would-be rescuerinake his 18 downward steps
in two movements, the first & downward movement of 5 steps,
the second, another downward movement of the remaining 13
steps. We can now say £bat the number of steps from his start-
ing point at which¢he finishes his three movements can be
indicated by 5 .5 13. Clearly, the first two of these move-
ments bring ]:{Im: *back to his starting point, so the “5 —5”
part of thegﬁatement can be ignored, leaving the answer —13.
So5 — 248X —13. But what meaning can be attached to this
- 1331)5viou51y it indicates the number of steps below his stark-
ingopoint at which the climber finishes. 1f then we agiee that
< "f‘ﬁl&n calculating distances up and down 2 ladder, or any
‘graduated scale, a minus sign way indicate eithera downward
movement or a position below some starting point, the ex-
pression 5 — 18 = —13 has a meaning which it could not
have with the elementary number-scale of arithmetic.

Now let us consider another case. Suppose the climber had
Tun up 4 steps, paused, then run up another 7 steps. We should
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then calculate his final position, relative to his starting point,
as 4 + 7 = 11, What does this 4 sign indicate? Diophantus
would have answered “addition.” We should now say “Yes,
but it may also indicate an #pward movement.” So if we agree
that a minus sign indicates a downward movement or 2 posi-
tion below some fixed starting point, a plus sign will indi€ate
cither an upward movement or a position above that same
starting point. We can now label the starting point'a¥0, the
steps above the starting point as +1, +2, +3, 447, .. and
the steps below that starting point as —~1, —ANB, —4, ...
Numbers marked like this, with a - ap- “sign, are called
directed numbers, or signed numbers. A difetted number having
a + sign is called a positive numberjone having a — sign, a
negative number. As we have seety Gatdan was the first mathe-
matician fo deal clearly with the:méaning of negative numbers.

Let us now return to the eguation 4x + 20 = 4, which Di-
ophantus considered “abgurd.” Using our new concept, it is
clear that x must stand§or a negative number, the number —4.
A possible problem(that would lead to this equation would be
“What movemeb Inust be made by a man standing on a lad-
der, if four j;ihx}s that movement combined with twenty steps
upward would bring him to a position that was four steps
ab’ove.liﬁé starting point?”’ Since the answer is “4 downward
Stgpg,\" we see that the equation makes perfectly good sense
after all. _

These directed or signed numbers may be used whenever
two movements occur in exactly opposite directions. Thus, ont
a horizontal scale, movements to the right, or positions to the
right of a fixed starting point can be indicated by positive
numbers; movements to the Teft, or positions to the left of that
starting point, by negative numbers.

Again, when a line rotates around a fixed pointin a clockwise
direction (the minute hand of a watch, for example) it i
customary to label the angle through which it passes as being @
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negative quantity. When a line rotates in a counterclockwise
direction, the angle through which it passes is labeled as a
positive quantity. The whole concept of positive and negative
is based on the idea of movements back and forth, or positions
that result from such movements. For this reason, the de-
velopment of the idea of directed numbers cpened out a great
new field for mathematical research, a field that was neces-

sarily closed to earlier mathematicians who did not have this./)

congept. Tt is difficult to say exactly when the modern conéept
of directed numbers came into being. We have mentiongedithat
in the sixteenth century Cardan made use of negative iimbers;
we shall see from a quotation from Napier (page' IB4) that in
1614 negative numbcrs were regarded as indicating “less than
nothing.” But we shall also see that Na@@t definitely con-
nected them with a point moving inja\direction opposite to
that in which it traced out positive guinBers. Tt is very possible
that it was this application by Napier, which appeared ina
book read by every great mathematician in Europe, that led
to our present concept of Ydirected numbers.”

No story of the developmient of symbolism in algebra would
be complete without\ﬁélition of a distinguished Frenchman,
Francois Vieta. He¢'was born in 1540 in the old French province
of Poitou. He sds a wealthy man who held various legal ap-
pointments fop- inany years, but spent his leisure time, like
Thales, i{{fﬁe enjoyment of mathematics. Vieta was a kindly
and ge}iérous person, as is shown by the fact that he once
entertalned a scientist for several weeks, although that sci-
{enligt opposed his opinions, He even paid his visitor’s traveling
®xpenses. His generous unselfishness is shown in the way be
would send copies of the mathematical papers he wrote to
scholars ail over Europe. A rich man, be was able to have them
printed at his own expense, a procedure to which the average
mathematician cannot hope to aspire. _ .

We did not include his very important use of algebraic

Q"
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symbolism among the specimens that were given a few pages
back, since it did not prove to be entirely acceptabie to other
mathematicians. We saw, however, how Descartes {1596-
1650) made use of letters of the alphabet as symbols. He owed
this concept to Vieta, who by 1590 was using letters as symbols
hoth for constant quantities as well as for the unknown(s) in
an equation. But Vieta followed a rigid rule wherehy the tn-
knowns were always indicated by the vowels a, gf i;0, u {and
y), while the constant quantities were always indicated by
consonants. Although this rigid rule was discarded by other
mathematicians, Vieta was responsible fér‘the modern use of
literal numbers, or letters that standsin’the place of numbers.
This fact was recognized by JohmWallis (1616-1703), the
distinguished English mathematician and professor of ge-
ometry at Oxford, whose work was later to influence the great
Isaac Newton. In tracingthe development of algebra, Wallis
says that Oughtred, the English mathematician (around 1630)
“who affected brevitypand to deliver what he taught as briefly
as might be, andreduce all to a short view” carried Vieta’s
“improvement™ still further. “Thus what Vieta would have
written X\

BAquadrate, into B cube

O CDE salid

Wo’xhd with him [Oughtred] be thus expressed
A8 pg
CDE
Oughtred’s symbolism for the mathematical concepts of

[1]
square” and “cube” would nowadays, of course, be further
B3

5 = FG.
E

Equal to FG plane,

12

abbreviated, in our modern symbolism, as

We shall meet Vieta again when we discuss the develop-
ments that took place in trigonometry during the second half
of the sixteenth century. Tn algebra, he not only improved the
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symbolism in the way we have seen, but wrote an important
book on algebra called In Artem Amnalyticam Isagoge, “An
Introduction to the Art of Analysis [algebral],” the earliest
work on symbolic algebra, and another book on the theory of
equations, which was not published until after his death. He
was the first to give a formula for the sum of what we now call « {M
an infinite convergent series such as O\
1+ @+ @+ @+ @+ AV
This actual series, or rather, its equivalent, had been solvedin
geometric form by Archimedes. Vieta’s formula enableé"any
such serics to be summed. Thus, if a is the first temff;énd 1 the
common ratio, or ratio between any term and 13 irmediately
preceding term, then (in modern symbolisnp)/
a4 ar4ar?+arf 4+ .. .+a}‘£‘t;i~’\. .= 1ir’

where r is a fraction {less than 1) fVieta was thus cne of the
first mathematicians to see thatlcertain algebraic statements
have a distinct “pattern,” ju‘s;t,' 4s geometric figures have their
own pattern. This was tgead to important developments in
the seventeenth and, subsequent centuries.

He wasg the first to\}ow that the value of « could be found
from a formulq instead of from a complicated geometric figure.

He gave the Re’fp\arkabie formula

:"\.'“ - - —_—
AFVE NV VN

. The development of algebraic symbolism paved the way ff)r
Sthe devclopment of analysis, the most fundamental element in
modern mathematics. It is difficult to define the precise
boundary between arithmetic and algebra. Possibly the es-
sential difference between the two subjects may best be sug-
gested by a simple jllustration. In the first place, the area of a
rectangle 4 inches long and 3 inches high would be found by
dividing that partjcular rectangle into squases, each 1 square
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inch in area, there being three rows of squares, each row con-
taining four squares. The next mental step would be {6 note
that in this particular problem, all the intermediate steps could
be omitted and the same result obtained by multiplying to-
gether the numbers 4 and 3. Then comes the transition to a)ge-
bra. Attention is now directed, not to the figures 4 and 3ybut
to the essential process followed, namely, that if A sthuds for -
the area of a'rectangle in square units, and land h respectively
for its length and height in corresponding lineargmi(s, then the
area of any rectangle will be indicated by t@:formula, or rule
A= lh.

The analysis of the problem has Jevealed the essential
process that lies behind the solutiod/of all such problems. A
generalization that is founded ofMigorous analysis may be ac-
cepted as frue in all cases. I§1s +his kind of analysis that lies
behind modern mathema}i‘g%f\‘ﬁthout the aid of the sym-
bolism we have been discUssing, it would often be impossible to
express concisely the abstract processes that lie behind arith-
metical examples @i Mthose processes. Symbolic mathematical
shorthand, th Iénéuagc of algebra, enables extremely compli-
cated procedses'and concepts to be expressed in a concise and
simple manér that is easily and quickly grasped by the mind
once @5“‘a1gebraic language” has been mastered.

Phéreader may have noted that Victa called his book on

& bra “An Introduction to the Art of Analysis.”” Vieta dis-
Sliked the term “algebra” and wished to substitute “analysis.”

This suggestion, however, was not fully followed. Today, the
word “analysis” is used for certain branches of higher mathe-
matics such as the calculus,

We have now traced the development of algebra to the stage
at which analysis enters. Tn subsequent chapters we shall
discuss the work of other mathematicians in developing such

analysis and in applying algebraic concepts and symbolism 0
other hranches of mathematics,
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A NOTE ON EQUATIONS, FOR THE UN-MATHE-
MATICAL READER.

A mathematical statement such as 3x+1=x+35 is
known as an eguation, since the value of the expression on the
left-hand side is egual fo that of the expression on the right- A
hand side.

Imagine a pair of scales having two weights in the leit-hand \.
pan, one of them marked “3x ounces,” the other *1 ou.nce,
In the nght -hand pan are two other We.lghts, one oﬁ “them
marked “x ounces,” the other “5 ounces.’ '\'\

Now imagine that the weights on the left balace those on
the right, as indicated in the given equatmn\lt will readily
be seen that any of the following processes dm now be applied
without disturbing this balance:

1. An equal weight can be added_ to each side.

2. An equal weight can be subtr}u:tcd from each side.

3. The whole of each side can be ‘multiplied by any number

(if x ounces balance Sﬁounces, then 3x ounces must bal-

ance 15 ounces) &
4. The whole of cac{\isi(je can be divided by the same num-
ber. '

5. The square {oot of each side may be taken. (This applied

to any rﬂg{)

We can nQv“"Solve” the equation 3x 4+ 1 = x -+ 5, that is, we
can findfhe value (or values) of x that will make 3x +- 1 equal
to JF.:I".S Thus:

C \ 3x+1=x+5

“ 2x-+1= 5 [By applying (2) and subtracting X
from each side]

- = 4 [By applying (2) and subtracting 1
from each side]

X = 2 [By applying (4) and dividing each

side by 2]
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The number 2 is said to be the “root” of this particular equa-
tion, or the value that “satisfies” this equation.

Remember that a minus sign means “diminished by.” Thus,
2x — O means “9 less than whatever may be the value of 2x.”
So if we add 4 to 2x — 9 the result will be 2x — 5; if we sub-
tract 4 from 2x — 9 the result will be 2x — 13, N\

Remember that the square root of a number is the'number
which, when multiplied by itself, will give that numbef When
the reader has read the section on “directed n,umbers” he will
see that the product of two negative numbers is a positive
number, So-the squaze root of 9 is not onl‘f\+3 it is also —3,
since —3 times —3 equals 49, These o Tesults are indicated
as follows: N

/9 = £3, read “the square( rbot of nine equals plus or
minus 3.” ¢

‘,o
*

¥

S
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CHAPTER IV

The Development of Trigonometry

O\
O
RIGONOMETRY, as we know the subject today, is a<bi‘anch
of mathematics that is linked with aigebra. A§such, it
dates back only to the eighteenth century. 'S

When treated purely as a development of gédmetry, how-
ever, it goes back to the time of the great Grégk mathematician-
astronomers who flourished some ¢we\hundred years before
and after the commencement of the, Chiistian era.

If regarded simply as "tri-angle-}ﬁbasurement,” which is all
the word tri-gono-metry impligs; its roots go back to Egyptian
days four thousand years.ago. This title, however, was not
given to the subject untilM595, when it was first used by a
mathematician nany d\?i‘tiscus.

It is obvious thatthe builders who constructed the Pyramids
of Egypt musé Kave been familiar with triangle-measurement.
However, the Egyptians do not appear to have had more than
the practi¢aj'working knowledge of the geometric properties of
triangl.gsf}x}c,, which we discussed in Chapter IL. It cannot be
saidfhat they invented anything that can definitely be re-
‘garded as trigonometry. It is true that in the Ahmes papyrus

\there is a reference to a segt, or segef, 2 word whose meaning is
obscure. Some think this segt corresponded to a certain trig-
onometric concept, but there is no definite evidence to support
this conclusion. The segt was probably a geometric measure-
ment which made sure that the faces of a pyramid in course of
construction all arose at the same desired slope with the base.

107
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We can, however, associate the Egyptians with the discovery
of certain facts, connected with shadows, which, centuries
later, were to form the basis of trigonometric discoveries and .
inventions by Arab mathematicians. These facts were orig-
inally discovered in the course of observations of the shadows
cast by the brilliant Egyptian sunshine. We shall meet them in
due course.

In order to trace the stary of trigonometry from its real,
geometric, beginnings we must commence by glancmg at the
contributions made to the subject—directly gf™ndirectly—by
four mathematician-astronomers, Aristarchts, Hipparchus,
Menelaus and Ptolemy, whose work Hatks the definite be-
ginning of what we mean by trigonometry.

Lver since thinking man has b é8Pon the earth he has been
striving to solve the riddle of t.hé universe. We have seen that
men were led to study the pmpcrtlcs of spheres and circles as
through 10ng centuries they watched the ceaseless processmn
of the stars, which secmcd to them to be imbedded in 2
spangled curtain that was continually being drawn across &
vast celestial ..phere We have seen how Greek geometry
reached its & matmg point with Archimedes and Apollonius,
and how fhroligh the medium of this geometry a great store of
knowledge about the Science of Numbers was accumulated,
whigh-was later to be equipped with algebraic symbolism

% “After the death of Archimedes, no further progress in “pure”
athematics (mathematics that is not applied to some other

* branch of sclence) was possible, however, until quantities had

ceased to be tied to geometric figures, and the restrictions thus

imposed had been lifted by the application of modern algebraic

analysis to the development of mathematical concepts and

processes. As we have seen, that day was to wait for many

centuries. Meanwhile, mathematicians turned their attention

to the application of geometric knowledge to the field of
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astronomy, a branch of science that is completely dependent
on mathematics. . '

In 280 B.C., one of these mathematicians, 2 Greek named
Aristarchus of Samos, made an cbservation of the summer
solstice that was mentioned—and made use of—hy the as-
tronomer Hipparchus, 145 years later. Thanks to this clue,

we can fix the approximate date when Aristarchus lived. It is
thought that he was about twenty-five years older than Archix™

medes, and a little younger than Euclid. Today, he is remept-
bered as astronomer rather than as mathematician,, dince it
was he who first concluded that it was the earth that Fevolved
around the sun, and not, as was universally believed, the sun
around the earth. To the Greeks of his day, lewever, Aristar-
chus was known as “the great mathematician,” while the
writer Vitruvius includes him among #he’few great men pos-
sessing a profound knowledge of geometry, astronomy, music
and all other branches of ““sciencel”™

Only ore book of his suryivcs, a work On the Sizes and
Distances of the Sun and Moon, and it is only through the Sand
Reckoner of ArchimedeS\that we know of his theory of the
earth’s movements. “Chis intriguing title for a mathematics
hook relates to aih.attempt made by Archimedes to estimate
the number of*grdins of sand in the universe; incidentally, it
gave him arf p})"portunity to use his newly invented method of
writing ; ; y large numbers. In discussing the universe, Archi-
medes tells us about the theory of Aristarchus, who disagreed
withAristotle and those who held that the earth was the fixed,
uomoving center of the universe, as it appears to be. He tells
Us that Aristarchus declared “that the fixed stars and the sun
remain unmoved, that the earth revolves about the sun in the
circumference of 2 circle, the sun lying in the middle of the
orbit.” If we substitute “cllipse” for “circle’” we have here our
modern theory of the movement of the earth, a theory which

Q"
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ilustrates the dictum laid down by the philosopher Par-
menides, a follower of Pythagoras, about 500 B.C., that the
cvidence of our senses is less reliable than the evidence of
logical reasoning.

Aristarchus was born eighteen centurie. before his time;
not until 1543 were his views to be vindice ted by felldw sci-
entists, not until some considerable time lat_r were @QY to be
accepted by men in general. O

In 1499, a German student, whose fathqr.};a:d originally
been a Polish citizen, graduated in medicip€’at the University
of Padua where Cardan was to follow i(his steps a few years
later. The student, Nicolaus Copernicys, whose real name was
Nicolaus Koppernigk, attended//gourses in mathematics
(largely astronomy in those dys) as well as in medicine. It
may seem incredible to tho.*;é familiar with modern courses in
medicine and mathemagicéﬁthat any one student could gradu-
ate in both these subjt:r:fé. Tt must be remombered, however,
that in the fifteentB tentury the amount of knowledge to be
acquired was relatively very small, compared with that of to-
day. Moreaz’s‘rihe only requirement for graduation in those
times was,attendance at lectures; there was no searching ex-
aminatjén” of students. There is no question, however, that
qu\émicus mastered mathematics and astronomy, for pot
only does he rank today as one of the great astronomers of all

{\time, but he earned his bread and butter as a professor of

mathematics.

Tn 1543 Copernicus lay on his death-bed. Just before be
fapsed into complete insensibility a newly printed book was
placed in its dying author’s hands. Tt was the book—today
world famous—in which he had revived the theory of the
movement of the earth that had been laid down by Aristarchus
nearly three hundred years before the beginning of the Churis-
tian era, During the intervening eighteen centuries men had
clung to the opinion held by Aristotle.
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The Copernican System, as it is called (though if justice
were done, it would be called the System of Aristarchus), was
not generally accepted for many years after the death of
Copernicus in 1543. For one thing, it is contrary to the ap-
parent evidence of our senses; for another, the Roman Catholic
Church did its utmost to suppress it, even forcing the great
Galileo, on June 22, 1633, to withdraw his support of the
“new” theory under threat of torture by the Inquisition. Cerd )
tain scholars of that Church admitted the truth of this theéry,
but fearcd that the faith of their followers would be weakened
should they learn that man is not the center of all L}@gs in the
universe. RS

Shakespeare evidently still held to the view\of Aristotle in
1596, when he wrote The Merchant of }{'{in}e, for he makes
Lorenzo say to Jessica NS,

“, . . Look how the floor of\heaven
Is thick inlaid with patifies of bright gold.
There’s not a star that thou behold’st
But in his motiondike an ange! sings.”

Such, then, is the maig\ground for the respect and admira-
tion in which we hold $h¥ name of Aristarchus of Samos today.
His mind, eighteen centuries ahead of his time, is yet another
example of the brilliant independence and originality of ancient
Greek thought-and scholarship.

In thi {hapter, however, our main interest in *the great
math’ematlcian” Hes in the methods he used in an attempt to
calctlate the relative distances of the sun and moon from the

\”‘:\aﬁh- Although his final conclusions were inaccurate, owing to
he crude instruments at his disposal, the method he employcd
involved caleulations which paved the way for the develop-
ment of the first real trigonometric concept.

His method was based on his realization of the fact that
since “moontight” is merely a reflection of the sun's rays,
the respective centers of the sun, of the moon, and of the
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earth must lie at the corners of a triangle that will be right-
angled at the moon’s center when half the moon is visible from

the earth.
N\
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[The distance between earth and moon is enormously exag-
gerated for the sake of clarity. The angle at the center of the
sun should be only one-sixth of one degree, approximately.)

Fic. 36
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Choosing an early morning when the moon, so far as he could
judge, was exactly hall-visible, Aristarchus estimated the size
of the angle at the earth’s center that lay between imaginary
lines joining that center to the centers of sun and moon. With
his crude instruments he estimated that it was, as we should
say, 87 degrees [it should have heen 89 degrees 42 minutes).
Using the geometry of Euclid, he easily calculated the other
acute angle in the triangle to be 3 degrees. O\

Armed with thesc facts, he then proceeded by a masfte;ﬂy
and complicated application of Euclidean geometry tq ‘ealcu-
late that the distance of the sun from the earth is \n:fpre than
eighteen times, but less than twenty times the di€tance of the
moon from the earth. Owing to the inaccuracy it the measure-
ment of the angle, his result is far from the ‘trlu\%:i [the sun is 388
times farther away from the earth than, is ?he moon], but what
intcrests us is that his remarkable geometric reasoning made
use of concepts which we now degeribe as trigonometric. Using
only geometric notions of anglles' (expressed as fractions of
right angles), arcs of circlgs antd chords in circles, he virtually
employed the modcrn..c&ncepts of circular measure and of
values that nowaddys would be expressed in trigonometric
language. Mathcrgatically-minded readers who would be inter-
ested to see thede elaborate calculations {and others connected
with the sizewithe sun and of the moon) will find a translation
of them df but in 4 Hislory of Greek Mathematics (Volume IT),
by SirThomas Heath.

.SQ’~iﬁu0h for Aristarchus ‘““the great mathematician.” We
{Bow come to the real inventor of trigonometry, Hipparchus,
who is regarded as the ‘“father” of this subject. :

We are ignorant of most of the events in his life, except for
knowing that he was born at Nicaea in Bithynia (the city
where a famous church council was to meet some four and a
half centuries later to draw up the “Nicene” creed, still familiar
to church people today), and that the years when most of h'IS
work was done were those between 161 8.C. and 126 B.C. As is
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the case of so many of the really great men of antiquity, he was
not considered worthy of inclusion in Plutarch’s Lives, which
were practically limited to lives of warriors, politicians and
orators. Had Hipparchus been expert in any of these deeply
respected occupations he would doubtless be included among
some heroes whose memoty Plutarch saved from well-merited
oblivion. Being merely the greatest astronomer of artiguity
and the father of trigonometry, he naturally was ngtyamong
Plutarch’s candidates for immortality. O

Since most of the books written by Hippagchué have per-
jshed, we have to form our estimate of }i® preatness from
references to his work made by otherinathematicians and
astronomers. One of these, Ptolemy, Whom we shall shortly
meet, made use of a catalogue of ﬁxéé ‘Stars, more than 800 in
number, the position of each Qi':v?hich in the celestial sphere
had been fixed by HipparchusBy calculating celestial an gular
measurements that cor{esf)i‘md to latitude and longitude o
carth. This Ptolemy Was a mathematician, astronomer and
geographer who must'hot be confused with the king who lived
some four hundrédvyears before his day, and who founded the
great 1ibra,r3&{€t~mcxandria.

Had th&Roman masters of Europe paid greater attention to
a disco¥esy made by Hipparchus, much trouble and confusion
for Ahelt successors might bave been averted. In 135 B.C. he
détécted an error in the number of days allocated to the cal-

{endar year, which should coincide as nearly as possible with the

3% solar year, that is, with the number of times the earth spins

round on its axis while making one completc orbit of the sur-
It makes no difference to this calculation, of course, whether
the view of Aristarchus or that of Aristotle is held; Hipparchus,
like all subsequent astronomers up to the time of Copernicus,
accepted the mistaken opinion of Aristotle.

No one knows who first discovered that the noontime
shadow of an upright rod is longest at the winter solstice (see
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page 50) and shortest at the summer solstice. Although the
historian Herodotus tells us that the Greeks obtained their
knowledge of a sundial from the Babylonians, it is known that
this instrument was used by the Egyptians as early as 1500 B.c.
for recording the passing of time, to usc an expression that con-
flicts with most philosophical concepts of “time.” By keeping 2
record of the number of days that elapsed while the shadow
cast by an upright rod passed from its shortest to its greatest
length and then back again to its shortest length, ancient paocf N
ples learned to mecasure the length of the year—one 'ofs:ﬂz{‘;
roots from which astronomy sprang—while observationsof the
hour-by-hour movement of the shadow enabled Jthem to
measure the daily passing of time.

We still call the “rod” on a sundial the gubion. This word
has had a long and varied history. It wa given by the Greeks
to the “rod” on a sundial because it Hegve them knowledge”
abouf the passing of time. Grnomom, is-derived from the Greek
word meauing “to koow,” whighiis also found in our word
“a-gnostic,” “‘one who does got*know (whether God exists).”
Then the word came to be applied to an instrument used by
mathematicians for deawing lines at right angles to each
other-—this time, & "éfence to the relative position of a sun-
dial’s gnomon anthits shadow. Later, the word was used, in the
form “gnomonise,” where we should use the word “‘perpen-
dicular.” StilMater, the Pythagoreans used i to describe each
L-shaped ®dd number that helped to build up each ‘“‘square
numberV such as 4,9, 16 and so forth (see Figure 30, page 68).

Hipparchus knew that Aristarchus had made an observation
{"ofthe hour when the shadow of the gromon Was shortest,
bamely, at the summer solstice in the year 280 B.C. Hipparchus,
145 years later, found that the summer solstice in 135 B.C. 0C-
curred some eleven hours earlier in calendar time that it would
have done if each of the intervening 145 years had coincided
with 365% calendar days, the then-accepted length of the year.
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From this observation he calculated that the solar year coin-

- cided with 365 days, 5 hours, 55 minutes, 12 seconds. With

modern instruments of precision it is found that he was only 6
minutes 26 seconds out, the time required for a complete orbit
of the sun being 365 days, 5 hours, 48 minutes, 46 seconds,
When, in 46 s.c., Julius Caesar, the Roman dictator, re-
formed the calendar, the discovery made by Hipparchys was
ignored both by Caesar, an amateur astronomer himself, and
by Sosigenes, the astronomer who “assisted” hini ‘T]‘:tey al-
located 365 calendar days to each “common” or'ordinary year,
and one extra day to every fourth year, thus assuming there
were exactly 3657 days in each solar year.duitidentally, Jultus
Caesar managed to secure immortality’on'this occasion, at any
rate, by changing the name of thefifth Roman month from
Quintilis to Julius, hence our nafé “July.” He also decreed
that the year should commengewith J. anuarius, originally the
eleventh Roman month, instgad of with March. This accounts
for the contradiction in tefmb of the names September, October,
November and Decembéffor our ninth, tenth, eleventh and
twelfth months, when they mean seventh, eighth, ninth and.
tenth, respectivelys Incidentally again, the successor of Julius
Caesar, the s‘:@iperor Augustus Caesar, not to be outdone,
modestly persuaded the Senate to substitute his mame for
Sextilis, which had been the sixth Roman month, hence our
“August” Those who despise Latin and the classics would
Dably be surprised if they knew how much Latin they speak

Jevery day, and how much history lies hidden in words.

&

Because the Julian calendar, as it is called, ignored the
discovery of Hipparchus that the solar year was a little less
than 3653 days, the vernal equinox, a day in March when night,
nox, 1s equal, egui, to day, began to creep back on the calendar.

In 1582, in order to restore the vernal equinox to its proper
place in the calendar, Pope Gregory XTIT reformed the Julian
calendar, omitting ten days in a single block. It was not until
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1752 that English prejudice against change—witness today the
prejudice of the ¥nglish-speaking peoples against changing
their medieval weights and measures to the simple, time and
labor-saving metric system—was finally overcome. By that
time it was necessary to omit eleven days, one more than had
had to be omitted in 1582, September 2, 1752 being immedi-
ately followed by September 14th, 1752, This naturally led to
riots in Evigland, wherc a warm reception awaits (or used to
await) the government official who tries to interfere in a man’q ™
private life. Maybe there were even more 1mn-mel,thema_tica’,llg,rt
minded English ihen than there are today; anyhowy ldrge
numbers of them decided they were being robbed oikleven
days of theix lives. So they rioted, raising the siggap “Give us
back our eleven days.” RN

It was not until the end of World War Kt'l}a.t Russia could
be persuaded to fall in line with other nations and abandon the
Julian calendar. They then had to orit the unlucky number of
thirteen days in order to bring thelf ealendar in line with that
of more co-operative nations, &ll'this trouble, confusion and
mental distress could ba.ve‘}z)eeﬁ avoided if only Julius Caesar
bad paid greater respect #e'the discovery made by Hipparchus,
and followed it up. \\ '

To prevent futugdervors, the Gregorian calendar laid dow.n
that, as in thesJulian calendar, every year whose number is
exactly divisifle-by 4 should be a “leap year;” having one cxtra
day tack, Yo to February {surely “pause year” would h'ave
been a:m}}re appropriate title?}, but that, in order to take into
acoomat*the (corrected) caleulation made by Hipparchus in

135 B.C., a ceniennial year should only be a “leap” year i it
€te 2 multipic of 400. Thus, 1600 was a leap year, 1700, 1800
and 1900 were 50t lcap years, 2000 will be a leap year, and so
on. Even this does not quite square matters. By the year 4905
the calendar year will have crept a whole day away from the

true solap year and something will have to be done about 1.
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All this discussion of the calendar error has taken us far
away from the days of Hipparchus, who first pointed it out.
Possibly, however, the discussion has brought home to some
non-mathematically-minded readers one of the many esgential
services rendered by mathematics to civilization. Without this
Queen of the Sciences our lives would be lived in chaos and un-
certainty., Q"

This is not the place in which to discuss the morestechnical
and complicated details of the astronomical discoVeties made
by Hipparchus. Some of them, especially that which concerns
the “precession of the equinoxes” were ef sitch great im-
portance that they gained for him the rg;p}xtatlon of being the
greatest astronomer of antiquity. [Fhe”earth, not being a
perfect sphere, but a slightly unbalaheed spheroid, wobbles on
its axis as it rotates. This wobb‘ie causes a slow, continuous
change in the direction of the ‘earth s axis, and thercfore of its
equator, known as pfeq.g.mm (“going ahead”). Hipparchus
estimated that this clfange in direction amounted—as we
should say—to 0102 jdegrees every year: today we estimate
that it 15 -0156 degyees every year.]

We now comfieMto the invention of trigonometry by Hip-
parchus, a stroke of genius 1o which we owe even more than
we do tolhis astronomical discoveries. It all arose out of the
measurément of chords in a circle.

O:}r word “chord,” indicating a straight line joining two

ints on a circle, comes from the Latin word chorda, which

';. meant a bowstring, before being taken over by medieval

mathematicians. Chorda in turn had come into Latin from the
Greek chords, which meant, primarily, the intestine of an
animal, and then either the gut used ior a string on a musical
instrument such as a lyre, or the string by which an arrow was
shot from a bow. The bow itself was called arcws in Latin. and
medievalists also took over this word to describe any part of
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the circumference of a circle. We still call such curved line an
“gre’ in consequence.

YQAYOHD
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We are told by Theon,of ‘Alexandria (a mathematician who
lived toward the end @fhthe fourth century AD., and whose
daughter Hypathi{\xim’s murdered by a “Christian” mob on
‘account of her kKnowledge of “pagan” science) that Hipparchus
wrote a trea.j:'(sé on “chords in a circle.” This work, he says,
filled twelwgBooks, that is, parchment rolls. In a book called
the Synfagis, or Almagest, as it became known to the Arabs
and.}&(&édieval Europeans, Ptolenty explains how the lengths
of&hords were calculated in his day. He doubtless obtained his
'"\}méthods from Hipparchus. The length of ¢ chord was connecied
\ with the size of the arc whose ends it joined. Thus, as we shall see,
the length of a chord came to be connected with an angle.
Let us first see how the size of an arc was measured. Suppose
a radius to make one complete turn, or revolution. In doing
this, it was considered to have made 360 “steps”; each “step”

N\
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was called by the Greeks a moire, or “part,” by medieval
mathematicians a degree (de-gradus, “‘a step away from™). The
connection between a degree and a complete revolution, or
circle, was indicated by the symbol ° chosen for the word
“degree(s}.”

Greek mathematicians, following the éxample of the Baby-
lonians, divided each moira into 60 parts. Ptolemy, Whom we
shall shortly meet, called these parts “first small. pé.l'ts ? He
then divided each of these in turn into 60 “second small parts.”
When Ptolemy’s book was translated into Latm this Greek for
“first small part” was translated as pars m@f}mta pnma, hence
our word “minute” for one-sixtieth ¢fla deﬂree his “second
small part” became pars minuta seciinda, hence our word
“second” for one-sixtieth of an.apgular minute. Hence also
our words “minute” and “secehd?” of time, for the “first small
part,” or one-sixtieth of andipur, and the “‘sccond small part,”
or one-sixtieth of one-sixtieth of an hour, Hence also the ab-
breviation for “first.§mall part,” one stroke, thus and for

*second small parl two strokes, thus . [These Babylonian
sub-divisions }'.{eré also used by the Greeks for sub- divisions
of other unlt‘&\hemdes those connected with angular measure]

Now lefiis see how a connection was found between the size
of an ar¢'and an angle. Figure 38 shows three concentric circles,
or cer"es, having the same center, here marked O.

\lmagme a line OP rotating in a counter-clockwise direction
irom an initial position OX to the position shown in Figure 38.
Let us suppose that OP has then moved through one-sixth of 4
complete turn or revolution. The measure of arc AB, and of
arc CD, and of arc EF would then be given by this same angle,
namely, one-sixth of 360 moirai, or degrees, each of these arcs
having the samec angulgr measurement, although their Jinear
measurements would obviously all be different. If, howevcr,
the chords AB, CD and EF were drawn in Figure 38, the units
in which their linear measurements were taken by the Greeks
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would vary in like proportions as the linear measurements of
the arcs.

The unit of length in which a chord was measured was ob-
tained from the diameter of 4is own circle. This diameter was
divided into 120 parts. Thus, if a chord were half the length of
the radius of its own circle, it would be said to contain 30 parts, =

and so on. Now the circumierence of a circle, or an arc of 360
: .Y

‘ 7 Fre. 38

degrees, is aiw@%"; times the length of the diameter of that
circle. So it 7ay possible to draw up 2 table giving the lengths
of chords,(ab so many “parts” of a diametcr, and connecting
each pi‘hiose lengths with the size of the arc whose ends were
iOi,nﬁd‘by the chord in guestion, the arc-measurement being in
angllar units.

Instead of speaking of moirai, we shall in future speak of
“degrees,” while we shall always indicate the size of an arc by
the number of degrees, etc., it subtends at the center of its
circle.

Armed with these definitions and explanations we are now in
a position to understand how Hipparchus drew up hig first
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#Table of Chords in a Circle.” Let us commence with a very
simple example: that of the length of a chord joining the ends
of an arc that subtends an angle of 60° at the center of its
circle. We will indicate the length of this chord by the ab-
breviation “crd. 60°.”

’EIé}: 39

A mere nodding agqii;iiﬁtance with Euclid’s geometry is all
that is necessary togec'that the triangle in the above figure has
each of its 51de§»the same length. Each dotted line is a radius,
or half-diameter; and must therefore contain 60 of the 120
“diameter-units” used by the ancient Greeks. So the length of
the chord; being here equal to the radius, will be 60 diameter
units, I we agree to indicate these units, or “parts” of a di-

méter by a small p written above and to the right of a number,

(W& can express this result as

erd 60° = 60»

We will spare the reader the more complicated geometry
required in some of the calculations that follow. If, however,
he remembers with enjoyment the geometry he learned at
school, he may care to amuse himself by checking (by Eu-
clidean geometry} the accuracy of the results obtained by
Hipparchus {or Ptolemy?) more than twenty centuries ago.
After an hour or so he may begin to hold the genius of Hip-
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parchus and other Greek mathematicians in still greater
respect.

crd. 36° = 377 &' 55"

erd. 72° =707 32 3"\

L8NS

[Compare the last two resultg;‘tttié
size of the angle is doubled, but ‘the
length of the chord is na@ubled.}

<O
h
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& Fro. 41
Q“}
O
N
A "\
N\
O
@) ord. 90° = 84 51' 10"

Fic. 42
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crd. 120° = 1039 357 237

Fio. 43

Here are some other results; we wild 16‘9,\ve it to the reader to
draw the figures, if he wants to:

crd. 2° = 27 ﬁb"’

cad. 1° = 2\ 507 (mearly)

crd. 3° = 0? 81 25" {nearly)

In the Synlaxis, Pto}cmy gives a Table of Chords for arcs
that subtend angles mcreasmg from 3° to 180° by steps of 3°
We cannot say howmuch of this ingenious and laborious work
is due to Ptqlsmy himself. Undoubtedly, much of the initial
spade wotkg at'least, was done by Hipparchus, and possibly by
Menclajs, whom we shall shortly meet. :

(Jlemumg our trail of the story of “chords,” we find our-
sohres transported to India. Some three and a half centuries

\"h&‘vc passed since the time of the Syntaxis. During those yeais,
Hindu mathematicians had studied the works of the Greeks,
and especially the Almagesi, the Arabic name, as we saw, by
which Ptolemy’s Syniaxis was known in the Middle Ages.
They knew the Greek method of calculating the length of 2
¢hord and doubtless obtained from it an idea that led, as we
shall now see, to an important trigonometric development.

We must now make the acquaintance of the Hindu mathe-
matician-astronomer Aryabhata. He was flourishing in A.D. 500
at Patalipatua on the Upper Ganges in India, where he made
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many complicated calculations that we should now describe
as being rather of an arithmetical or algebraic nature than
purely geometric, advancing the study of arithmetike in certain
respects.

In trigoncmetry, Aryabhata made two very far-reaching
changes in his calculations of the lengths of chords in a circle.
First, he substituted the length of a kaif-chord for that of 2
chord ; secondly, he used the same unit of measurement for the’)
arc (that is, the angle at the center of the dircle), the radius,
and the hali-chord, using angular minutes for each. (™

How is it passible to use angular measure for the'length of a
straight line? Well, just fmagine a piece of string equal in
length to the radius of a circle placed on the'sfrcumference of
its circle. The angle at the center of the.g@‘i} subtended by the
ends of the string will be equal to théangular measure of an
arc equal in length to the radius. ‘How could this angular
measure be caleulated? It all hinged on knowing the value of =,
which we first discussed on Ij)‘aée 60. [Note that this Greek
letter was not used for t'his\r'atio until early in the eighteenth
century.! ix\ '

1t had been kndwn {rom very early days that there was a
connection betwen the length of the diameter of a circle and
its circumieefice. The Babylonians and the Hebrews seem to
have muddled along as best they conld by assuming that , t?le
ilumbﬁ\:‘i?f’times the diameter is contained in its own cir-
Cumfﬁ%nce, was equal to 3. Thus, in the Old Testament (1
Kings, VIT, 23) there is a description of & “molten sea,” pre-

““$umably a metal basin of some kind, whose dimensions are

- Vgiven as “ten cubits from the one brim to the other . . - and a
line of thirty cubits did compass it Tound about.” The same
dimensions of this same “molten sea” are given again in 2
Chronicles, IV, 2. The Egyptians knew better than this, even

by the time of the Ahmes papyrus, and therefore presurmably

by 2200 B.c. They found, doubtless by actual measurement,
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that, as we should say, the value of 7 was 3:1603. Archimedes,
as we saw in Chapter I1, was able to calculate the value of v as

lying between 3-140 and 3-142, w use modern notation.

Aryabhata came even nearer the true value of , calculating
. 62832
this to he 30500 ~
Knowing that the circumference of any circle ig“approxi-
mately 31416 times the length of its diameter, or#:2832 times
its radius, it is a simple matter to divide 21,00,0,}1;1\1’& number of
minutes in the 360° measure of the whole/oircumficrence, by
this 6:2832. The answer will be the approximate number of
angular minutes in an arc {of any circle) equal in length to the

, or 31416 as we should say today.

radius of that circle. In this way /Afyabhata found that the

approximate angular measure-gfthe radius of any circle was
3438 angular minutes, a valué that will suggest to mathemati-
cal readers the familiar,%nd more exact 57°17 44-8" or
3437-74% of our modemi®radian.”

In order to understand Aryabhata’s use of a kalf-chord, the
non-mathematical\feader is advised to study Figure 44 care-
fully. It is img(irtant that he should do so, since Aryabhata’s
method is [:I%sonc which, with medifications, is followed today.
The alligsportant point, from the modern standpoint, is that
AYYflb}lﬁt& introduced a right triangle. It is this right triangle
th%’t}s the basis of all our present “trigonometric functions.”

\%Imstcad of considering the length of the chord that is con-
«) “nected with, say, an angle of 30°, as the Greeks would have

done, Aryabhata found the length of half the chord that sub-
tended an angle of 60° at the center of the circle. He then as-
sociated that length with half the angle, namely, with 30°.

It will be seen from Figure 44 that this half-chord is not
equal to the length of a chord XY that would be formed if the
ends of the arc of 30° were joined, So there is a much greater
difference than appears at first sight between a Hindu (and
modern) half-chord, used trigonometrically, and the Greek
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“chord” of Hipparchus and Ptolemy. The half-chord now as-
sociated with an angle is #of half the chord that subtends that
angle at the center. I is half the chord of twice that angle. As we
should say teday, if A is an acute angle,

sin A = 3(crd. 24)
Readers who may not be familiar with this abbreviation
“sin A”’ should refer back to this sentence after reading the
paragraphs that follow.

p <" Fie. 44

Aryab. a’g}"‘\naturally calied his “hali-chord” by a Hindu
name. Thi§ was the word jiva, to give it one of many variable
spellidgs. Thus, he calculated that the jive of 30° was 1719;
thé\sivg of 15° was 890’ (a more exact pumber would be

976); the jiva of 7°30" was 449’ (more exactly, it would be
448-72"). These values appear in a book written by him, 1n

~which the rules appear in the form of verse couplets. It 1s
called the Aryabhatiyam.

Qur story of “chords” now takes us to Arabia. Certain Arab
mathematicians followed Aryabhata’s lead, even to writing the

N
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Hindu word jive, in Arabic characters, as jibe. Ixcept for its
technical, mathematical association with the length of a half-
chord, this word jibz was meaningless in Arabic, and would
certainly be meaningless fo any European translator who was
unfamiliar with its highly technical meaning. Now, there is
another Arabic word jaib, which has the same consonangsyb
as iba, but which has nothing whatever to do with chords of a
circle since it means “bosom,” “curve,” “opening att {he neck
of a garment.” This word jaib would certainly bevknown to
every European translator from the Arabic. ID.%;'Htihg Arabic,
the practice was to ignore the vowels_and®write only the
consonants, leaving it to the reader, who\was assumed to be
familiar with the language, to suppLy\ Ahe vowel sounds. It
follows, therefore, that in an Arabls.\maihematlcs manuscript,
jibe would be written as jb.

The scene now changes.to Europe to Toledo in Spain about
the year 1150. Here, in thegity famous for the manufacture of
sword blades, and but recently freed from Moorish domination,
was a college of translators in which Arabic manuscripts,
many of them grgmslations from the original Greek, were
rendered into*Lalin for the use of scholars all over medieval
Europe. Af(this college was Gherado of Cremona, a distin-
guishedtrénslator whom we have met before, but who was not,
plea.se'\nnte, a distinguished mathematician. He spent many
}’RQrs translatmg Arabic versions of the works of Aristotle, the

\Blements of Euclid, the Sphaerice of Menelaus, a book we shall
V% meet with later in this chapter, the al-jabr of al-Khowarizmi,

the Syntaxis or Almagest of Ptolemy, and many other Avabic
manuscripts. Among the latter was an Arabic work on trig-
onometry. When Gherado came across the word jibe, abbrevi-
ated to the letters b, he must have shaken his head in puzzled
bewilderment, The only Arabic word he knew that contained
the two consonants jb was juib: but jeib meant ‘“bosont.”
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What on carth could this have to do with the length of half a
chord? In the end he appears to have decided that what
seemed right and proper to Arab mathematicians was good
enough for Gherado, for he proceeded to translate j& by the
TLatin word sénus, “bosom,” “curve.” Thus it comes about that
every time we speak of the sine of an aengle today we are per-
petuating an crror made 800 years ago. The sine of an angle is
onc of the basic concepts of trigonometry. Sime is nowa}d\a'Ys,\
abbreviated to sin, pronounced as “‘sign.” « N

Nowadays the sine of an angle is not the length 6f'4 half-
chord, as it was until the cightecnth century. It is@ #atio. How
that ratio is obtained will be explained in asnduent. By the
time of the greatest of Swiss mathematicial ‘Euler, who lived
from 1707 to 1783, the sine of an angle wisgenerally treated in
this way, as a raéio. Since the time and work of Euler, whom we
shall meet in  later chapter, it,ha8 always been treated as
such. Tt was Euler who finally ¢tahsformed trigonometry from
a geometric to an algebraic basis. The beginning of this tre-
mendously important trgnsformation dates from about 1530;
its completion was dyeto Euler.

The basic conceppand first step that eventually led to this
change scems, &bsurdly simple—and unimportant—at first
glance. Of e, it is easy to be wise after the event—when
some brightyperson has thought of it—but it is strange that no
one tl\%@iught of the simple method we now have of writing
decimtal fractions until the sixteenth century. Once this was

. dalte, the sine of an angle ceased to be a length and became a
umber.

If the rcader will look at a modern Table of Sines, he will
find that “sin 44°30°,” to take one example, is giver{ as
“70091.” Let us see what this means. First, remember 1t 15
10t 4 length, as were the values of sines and chords from t.he
time of Hipparchus to that of Euler, itisa ratio. Now a ratio,



130 MAKERS OF MATHEMATICS

being just an ordinary #umber and not a quantity, can be ob-
tained regardless of the units in which the two quantities
whose magnitudes are being compared may happen to be
given, provided that each of these quantities is expressed in
similar units. Moreover, once it has been obtained, a_ratio
can be used just as an ordinary number, without refer¢hce to
“inches,” or “minutes,” or “cubic fect,” and so o, i other
words, a ratio is algebraic and not geometric. THUS, the ratio
between 1719 angular minutes and 3438 anguhdr minutes gets
away from angles and circles and becomégyjust the number
#5453, or 1, or +5; the ratio between 3 in ch& and 12 inches gets
away from the Jengths of lines and _becomes just the number
1%, or §, or *25. It was the develdpment of decimal-fractions
and Napier’s method of writiifg tem which enabled any frac-
tion to be expressed, to any detired degree of accuracy, in an
easily-handled form, and-fius paved the way for the substi-
tution of ratio nun;b‘érl&f in place of lengths in trigonom-
etry. N

« By using a 7aiiv,"in decimal form, instead of a length for the
stne of an aKg?,. the first siep was taken in changing trigonomelry
Jrom a geomelric to an algebraic subject. As a consequence,
mathengaltii:ians, scientists, architects, surveyors and countless
othefs mow have another most powerful mathematical tool at
their disposal.

N\ How can we express the sine of, say, 44°3( as a ratio? Where
4% can we find the two quantities involved in every ratio, one for

the numerator, the other for the denominator? If you will look
again at ¥Figure 44, you will see that the value of the sine, of
five, as a length, came from one of the sides of Aryabbata’s
right triangle. Note that this side was opposite the angle whose
“jiva” or sine was to be found. Note further that the length of 2
second side in this triangle was also, indirectly, involved, even
in Aryabhata’s time, since the number of minutes in which e
expressed the length of his half-chord depended on the number
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of minutes he had chosen for his radius, Here is the clue that
enables us fo find the two quantities for our ratic number,
simply from a right triangle: we can dispense altogether with
Aryabhata’s circle, and with the terms “radius” and “half-
chord.” All we need is a right triangle that has one of its acute
angles equal to the angle whose sine is required. For the
numerator of our fraction (or ratio) we shall require the length
of the side opposite this acute angle, since this side corresponds(),
to Aryabhata’s “balf-chord”; for its denominator we skallt
need the length of the hypotenuse, or longest side of oqrfgight
triangle, since this corresponds to Aryabhata’s “rafius.” If
we wanted to give ourselves unnecessary work. (newadays) we
could calculate each of these sides in angulariminutes, or in
sixtieths of a radius, or in tenths, or thousan@‘ghs, or millionths
or ten-millionths or even ten-billionthsoh s radius—all these
units have been used, and discarded néwpthat we have decimal
fractions. Why not just measure $iet fwo lines in inches, and
have done with it? The ratio, }Jei‘ﬁg just a number, will not be
affected by the kind of unit in\Wwhich each line is measured, as
we saw just now, K .

Suppose then that m@ want to find a rough approximation of
the value of sin 44‘33}‘, but bave no Table of Sines available.
First, draw two lines (of indefinite length) which intersect at a
point 0 at an a.f;léle of 44°3(¢, Choose either one of these lines,
and on it mark off OA equal to, say, 2 inches—any other
measurentent will do. From A draw a line at right angles to th.e
unmarked arm of the angle, and let B be the point where 1t
) Aufsthat arm. [See Figure 45.]

Compare this figure with Aryabhata’s figure on page 127.
You will see that if you were to draw a circle in Figure 45_{ hav-
ing O as center and OA as radius, AB would be the jiva of
44°30', as the Hindus would have put it.

You will notice, however, that instead of giving OA ({“'Y a-
bhata’s radius) the angular measure of 3438 as the Hindus
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would have done, we have simply marked it with its linear
measure of 2 inches. Let us now measure AB, also, of course,
in inches. Provided our work is reasonably accurate, we shall
find that, as exactly as we can measure with an ordinary ruler,
AB will be 1'4 inches long, All that now remains is to compare

N

R T

the length i\éﬁ with the length of OA, and thus follow the
idea devéloped in the sixteenth and scvenicenth centuries,
which 0 in effect, “Let us get rid of all these various units
of leggth in which we have for centuries indicated the sine of an
angle, and let us substitute a ratio number.” So all we have 10
’% 1s to calcalate the value of the ratio
length of side opposite our angle
length of our hypotenuse '
From the dimensions in our figure we see that
sin 44°30)' = 1-; = 7.

F

Naturally, since this result is based on construction and
measurement, it would not be sufficiently accurate to use in
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carefnl mathematical computation. As we saw, our modetn
Tables of Sines, which do not depend on drawing or measure-
ment, give sin 44°30’ as -70091.

We said that the length chosen for OA was immaterial. If
we were to make QA equal to 3 inches we should then find that

AB was 21 inches, but the ratio g would still be 23;1, or 7;if

we were to make OA equal to 4 inches, AB would then beoo‘rlae:, '

-
7N
L )

3-8 inches, but the ratio would remain 2:5 or 7.

How would Aryabhata have expressed sin 44°3Q~'( He would
have found that “jive 44°30" = 2407"." .

So the ratio between the jive, or half- cho@ in minutes, and
the radius, also in minutes; would be 3l 32\ If we work this out
in modern style, we get -7001, which'is not very far off our
modern value of -70091 for sin, 44;"30’

How would Hipparchus hz’nﬂe expressed sin 44°30'? We saw
that sin A = 3(crd. 2A) <so sin 44°30" = 3{crd. 89°), as will be

seen from Figure 46 O

+(crd, 89°

Fic. 46
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Hipparchus would (doubtless) have said that
crd. 89° = 84» 6’ 28"
so 3{crd. 89°) = 42» 37 147
To write this in modern fashion we must work out the ratio
4203 14"

o0» ~N
since the length of the radius, as taken by Hipparchus \a.nd the
Greeks, was 60 of the 120 parts into which they-divided the
diameter, ~\ by

The numerator of this fraction = 42 -+ -e?j—::l— —1—4—
- 607 (60
238 -05 4+ 0036
=42:0536 parts of a diam-
Ot eter o
The denominater = 60 parts of a diameter.

, 42 , :
So, working out the ratio: 0536, we find that this Greek re-

it

sult of calculatipp.sin 44°30° would give 70089 as against
70091 in modern'tables. The author must confess that a dislike
for unneces$dry work caused him to calculate the 84° 6' 28" by
mathemdfical tools unknown to Hipparchus. Hipparchus,
howewety would without doubt have obtained a similar, or
peffiaps more exact result by laborious Fuclidean geometric

@thws.

The reader who enjoys mathematics—and, strange as this

may sound to some who have been subjected to a certain type

of mathematical teaching, mathematics can be a most satis-
fying source of enjoyment—such reader may find it interesting
to see how near Ptolemy {or was it Hipparchus?) and Aryé
bhata got to the modern values, when they gave the following
results:

crd. 60° = 60°; fivg 30° = 1719’ (sin 30° = 5)

crd. 36° = 370 4’ 55" (sin 18° = +30902)
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jiva 15° = 890’ (sin 15° = 25882)

crd, 72° = 700 32’ 3" (sin 36° = *38779)
crd. 90° = 84» 51/ 10" (sin 453° = -70711)
fiva 7° 30" = 449’ (sin 7°30" = 13053)

crd. 120° = 103» 55’ 23" (sin 60° = -86603)
jive 11°15" = 671’ (sin 11°15’ = -19509)
crd. 12° = 120327 36" (sin 6° = -10453)
jiva 3°45 = 225’ (sin 3°45" = +06540)

After this mathematical interlude, let us resume the sto;)aﬁf
trigonometry’s beginnings. The trail laid by sine and it5-ore-
bears through the ages has taken us far from the Gaeece of
Hipparchus. Tt is hoped, however, that the journgy'may have
given the reader a clearer bird’s-eye view of ‘this section of
trigonometry’s development than would aye been the case
had the story of sine been told in discontiected fragiments as we
passed chronologically through the ages’ '

What use did Hipparchus and Jater Greeks make of these
Tables of Chords? That they st have been considered of
great usefulness is evident by the mere fact of their existence.
Who in his senses—and tl}e reader will surely agree that Greek
mathematicians of &h ‘i’ent days were very much in their
senses—would spehd laborious hours in calculating by geo-
metric methods/the length of the chord of every half-degree
from ° to 18Q%if great usefulness would not result?

Quite afart from their value in astronomical calqllationk
their m‘ah-l use—they were used for the solution of plane tri-
angles,"or triangles drawn on a flat surface such as this page.
(T8t are given certain facts {data, “the things given™) about a
triangle; such as the length of each of its sides, or the length
of two sides and the size of the angle included between them,
and s0 on, we may then calculate the remaining partsof thetrl-
angle. This process is called “‘solving the triangle” or the “solu-
tion of the triangle.”

Nowadays, the solution of plane triangles is a simple matter
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if we work up to it step by step. But it was not so simple for
the Greeks. To solve a plane triangle they imagined it as being
inscribed in a circle. Then each side of the triangle would be a
chord of that circle, and each angle of that triangle would
equal half the arc lying between the ends of the side opposite
that angle. N\

C "\"\

A

Fic. 47
Very little geometsic knowledge is needed to show that angle
A is half the\@'sgle at the center of the circle, which in tumn i
the measuf®of thg arc CB. So angle A equals “half arc CB.”
The valae’of a Table of Chords like the one drawn up by Hip-
parclily will now be manifest. The mathematically minded

\ {@éi‘ will see the obvious connection between Figure 47 aod

a

N S our. present familiar formula, for plane triangles, —— %
&

inA

b c .
—— = ——. This, and many other “modern” formulas (in

sinB  sinC

their original and more complicated forms) were known and
used by the Greeks. Mathematicians of the period we are €X°
ploring, however, were mainly occupied in applying geometry
to astronomy. So they naturally paid greater attention to the
solution of spherical triangles. Before we glance at the trig-
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onomeiry connected with such triangles let us bear in mind
that a great deal of geomeiric knowledge of a sphere was in the
possession of mathematicians two thousand years ago. By the
time Euclid wrote the Elements there was a great store of such
knowledge. He made use of propositions relating to a sphere
that were so well known in his day that he merely stated them
as accepted facts and did not give their proofs.

Certainly by the year a.p. 100, or some 350 years after )

Eratosthenes had calculated the circumference of the easth,
as we saw in Chapter IT, the geometry of the sphere Hiadibeen
thoroughly investigated. For instance, the two kindsof circles
that can be drawn, or imagined, on the surface ofa sphere had
been classified as great circles and small circlesy 1f an orange is
cut into two exactly equal parts, the cut fahde by the knife on
the outside of the peel will be a great eirele. The mathematical
definition of a great circle is “the infersection of a sphere witha
plane passed through its centemiand having the same center
and radius as the sphere.” Asfﬁﬁﬂ circle of a sphere is any other
circle drawn on the surfageof that sphere which does not com-
ply with this definition\All the “parallels of latitude” marked
on a globe, with the‘exception of the equator, are small circles.
The equator is algheat circle. Every circle that passes through
both north and(sonth poles is a great circle. The shortest dis-
tance betwen any two points on the surface of a sphere is the
shorter'are'of the great circle that passes through those points.
Tha{i’;is\why navigators have to learn all about “great circle
e,
<. ) That these, and many other geometric facts about spheres,
were thoroughly well known by 4.p. 100 is clearly shown by th.e
way in which Menelaus of Alexandria, the “father” of spheri-
cal trigonometry, introduced the subject of the geometry of
spheres in the first two of three books that make up a most
important work of his, called the Sphaerica.

He does not trouble to define these circles (and other mat-

Q!
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ters connected with a sphere) but assumes that his readers are
already familiar with them. He starts off by defining a spherical
triangle as “the area enclosed by arcs of great circles on the
surface of a sphere.”

The non-mathematical reader can easily grasp.the connec-
tion beiween great circles and spherical triangles if. hé\will
place three rubber bands in the positions of great circles any-
where around a ball. (If the bands do not slip, they'uiay be as-
sumed to be roughly in the position of great circles.) The first
two of these bands will divide the surface of the spherical ball
into four parts, each of which is called .a i‘sme (Latin, funa,
“moon”). When the third rubber bahd\is placed in position,
it will divide each lune into two spk&}@éal triangles, provided it
does ot pass through the point o‘f\mtersectlon of the first two
bands. It follows that, in genel’al ‘three great circles divide the
surface of their sphere inta. ‘ight spherical triangles. It is pos-
sible for “three arcs of intersecting great circles” to enclose an
area which has one gfits bounding arcs greater than a semi-
circle and one of{ts angles greater than 180°. We need not
solve such a ‘ft';‘i&ngle,” however, since the arcs that bound it
also form pa&ks of related triangles, each of whose sides is less
than a sefni-circle and cach of whose angles is less than 180°.
Menelafis recognized this, since he definitely limits his discus-
siof’$0 triangles whose sides are each less than a semi-circle.

\ Tn the third book of the Sphaerica, Menelaus produced the
N\ world’s oldest-known work on spherical trigonometry. In it he
laid the foundations of a branch of mathematics that Is €-
sential, not only for astronomers and geographers, but also-for
all navigators.

The details of spherical trigonometry are too technical for
discussion in a book of this nature, but very little mathematical
background is required to unders‘ta.nd the general principles of
the subject that underlie its application to navigation.

The main object of every navigator is to be able to locate his
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exact position on the earth’s surface. To do this, he must know
his latitude and longitude. The reader who is unfamiliar with
the exact meaning of these terms should glance ahead at pages
149-153 before proceeding further.

The navigator requires no knowledge of trigonometry in
order to be able to find his longitude, provided he knows
Greenwich time no matter where he may be on the earth’s sur-

face. Nowadays he finds this either by radio or by having ag A

accurate chronometer set to Greenwich time. In 1714 the Eng-
lish government offered prizes of £10,000, £15,000 and, £20,000
(enormous sums in those days) for chronometers gufficiently
accurate to enable longitude to be determined within 60, 40
and 30 miles respectively. A Yorkshire watchmaker named
John Harrison, whose father was a carpentet; won the highest
prize, though the whole of it was ngé awarded to him until
1767, RO

Since the earth revolves through'360° every 24 hours, it re-
volves through 15° every hout, or 15’ every minute, or 15"
every second. Now suppose it is “sunrise” at, say, 5 A.M. at
Greenwich and everywhere along the Greenwich meridian. The
town has just swung\ﬁat'b the sun’s rays. It will still be “dark”
at all places betwéen the Greenwich meridian and the meridian
180° to the wWest/of Greenwich, but “light” at all places be-
tween the Gréenwich meridian and the meridian 180° to the
east of G;{’ééﬁwich. Since the sun appears to move from east to
west, ’!{Ve\know that the carth spins from west to east. So every
plateion a meridian 15° west of Greenwich swings into the
{“Sunrise” an hour later than Greenwich; every place on a
Teridian 15° east of Greenwich swings into the “sunrise” an
hour before Greenwich. '

Suppose then that a navigator on a ship finds that noon,
when the sun is directly over the ship’s meridian, occuts w]:l.en
Greenwich time is 2 ».m. He knows that his Tongitude is twice
15°, or 30° west of Greenwich, since his “ocal time” is 2 bours

QY
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behind Greenwich time. If his local time were noon when
Greenwich time were 9 A.M. he would know that his longitude
was three times 15°, or 45° east of Greenwich, since his “local
time” was 3 hours ahead of Greenwich time.

To find one’s latitude is not such a simple matter, since it
involves spherical trigonometry. It is determined by observa-
tion of the stars. It simplifies an understanding of the apparent
movement of the celestial bodies if the universe, jé~~régarded
from the point of view of Aristotle, that is, as though the earth
were the fixed center of the universe while aroiad it revolved:
the stars, seemingly embedded in the transparent surface of 2
vast celestial sphere whose center is thewéarth’s center. Since
all our “star measurements” are ne@ssarily angular ones it is
perfectly justifiable to imagine {he’stars as being thus em-
bedded in the surface of a celedtial sphere, no matter what may
be their actual distance frofn.the earth.

Beneath each star, af @ny given moment, there will be a point
on the carth which is-firectly under that star. This point on
the earth is calledishe star’s sub-siellay point at that particular
moment. As each'star appears to move around the heavens, s0
its sub-stellarpoint can be imagined as moving across the sur-
face of tife)earth, tracing out an imaginary line parallel to the
earth’s‘€quator, and therefore one of innumerable parallels of
latifude. The exact position of every prominent star and of jts

.gﬂ’):stellar point has been worked out by spherical trig-
\ onometry and can easily be found in an air or nautical al-

manac. This is an example of the kind of work done by Prince
Henry the Navigator of Portugal and his mathematicians, and
by the mathematicians appointed by Charles II of England
in 1675 to work at the observatory he had just built at Green
wich, near London. King Charles did this *“for the advance
ment of navigation and nautical astronomy,” so essential for

nation dependent on overseas commerce, as well as for control
of the seas.
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Figure 48 shows the earth, enormously exaggerated, as it is
stuated {apparently) at the center of a vast celestial sphere.
The point marked P is the north celestial pole, the position of
the Pole star, which may be regarded as situated directly

P

*1’Q Fic. 48

:..\s; » )

<\a ibove Py, the north pole of the earth. This is the only star that

does not appear to move (actually it does apparently move

around in a tiny circle, but we will ignore this), since the axis

of the earth points almost directly toward it.. .
The point marked Z is the zenith, or point on the celest}al

sphere directly above an observer, say, o & ship at the point

marked 7, on the earth.
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The point marked S is the position of some star as it appears
from the earth to be imbedded in the surface of the celestial
sphere. The point marked §; is the sub-stellar point of that
star on the earth.

Now note that the two spherical triangles in this figure are
the same skape, that is, one of them might be a photographic
enlargement of the other. Their correspondingly placed angles
are equal and their correspondingly placed sidds’are equal
when measured in angular measure as arcs of greithcircles, since
the length of such an arc is measured by the 4hgle it subtends
at the center of the sphere. Since botK.the earth and the
celestial sphere have the same centery, the angular measure of
arc PZ, for instance, will be the samé@s the angular measure of
arc P1Z,y, both being equal to aingaoz at the earth’s center,

The angular measure of arc P;S, (equal to arc PS) can be
obtained from a nautical :aiiﬁanac, s¢ too, can the angle Py
(equal to angle P). Singé'the arc SZ equals the zenith distance
of the star S, which.is dbtained from the observed altitude of
the star, being th@ﬁngle between the star and the zenith of the
observer, it § ]lQ‘wé that arc §;7Z; will also be known. Thus, in
triangle P1Z,S," the observer knows the angular lengths of
P:S, and §iZ, and the size of angle P;. He can now solve the
sphericaltriangle P1Z;S, and find all the remaining parts of it.
Ongeyke has found the angular measure of PyZ, he has only to

‘the difference between that measurement and 90°, the

\ :3angular measure of the arc of the great circle from the North
' Pole to the Equator, of which PyZ, forms part. This difference

Is shown in our figure by the dotted arc below Z,, This will
obviously equal the ohserver’s latitude.

“The Greek method of solving certain cases of oblique spheri-
cal triangles (triangles that did not contain a right angle) was
to split them up into right spherical triangles. They used (in
more complicated form, of course) several of the formulas we
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use today for the solution of these right triangles. Our present
formulas were not completely developed until 1614, when
Napicr, whom we shall meet in a later chapter, drew up the
“Rules of circular parts” we still use. These “Napier’s Rules”
occurred incidentally in a book about an invention that
amazed and delighted mathematicians, namely, that of log-
arithms. ' \

The possibility of the direct solution of an oblique spheriéati /

triangle does not appear to have occurred to the Grqekg,‘b.nd
it was not until the tenth century that the Arabs began to in-

vestigate this matter. Not until the end of thegigteenth cen-
tury did Vieta and Pitiscus lay the final fodnddtions of our
present-day methods, by developing sqms\\df the formulas
we now use, and it was not until aftenNapier’s death that his
four “analogies” (formulas involving *dike” ratios) were pub-
lished.

Enough has been said aboutpherical triangles to indicate
yet once more the debt welgwe to the great Greek mathe-
maticians who first develdped the subject. It was the genius of
Menelaus, cighteen, cefiitiries ago, that first put this powerful
and practical tool‘iﬁth the hands of astronomers, geographers
and navigators,.,\.)

It must be .fé}némbered, however, that all the trigonemetric
calculationé@nd all the trigonometric reasoning carried out by
the Grepk“mathematicians were limited fo values given in
Tables of Chords. In consequence, many of their methods were

_heCessarily much more roundabout than those that havei arisen

sbee the development of no fewer than six different kinds of

trigonometric tables from the idea implanted by the original
Greek Table of Chords. _ .

Before we discuss the work of the last Greek mathematician
of interest in this chapter it will save a good deal of clumsy
circumlocution if we digress from the Greeks for a moment and

Q"
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jump to the year 1620 just to pick up a word which will obviate
long-winded expressions like “the chord of 180°-minus-the-
angle-we-are-discussing.”

During the sizteenth and seventeenth centuries the circle
used by Aryabhata, as we saw, was replaced by the simpler
right triangle of modern trigonometry. Now, in everyight
triangle, the sum of the two acute angles must be 90%8ince the
sum of all three angles in any triangle is 180°. For; this feason,
the two acute angles in any right triangle are saxd to be comple-

3 .~.f\"
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menis of egch other, The Latin word compleo means “I fill up,”

- “I complete,” so the complement of any acute angle is the

acut€’angle needed to “fll it up” to 90°. Thus, 80° is the
gbm?lemmt of 10°, and so on. Let us draw triangle ABC, right-

angled at C.

Since the angle at C equals 90°, angle B is the complement of
angle A. We have already discovered that the sine of an angle
length of side opposite that a.ngle

length of hypotenuse
this fact, we see that “the sine of the complement of A,”
in other words, the sine of angle B in Figure 49 (which rﬁpl’e'

is equal to the ratio

. Applying

sents any right triangle) will be the ratio %% In the early sev-
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enteenth century, Edmund Gunter, who played an important
part in the application of Newton’s invention of logarithms to
the development of the slide rule, preferred to call the sine of
the complement of A by the shorter expression complement sine
of A. In writing, he shortened this still more to ¢o. sine 4.
Soon, other mathematicians dropped the period, writing and
calling it cosine 4 which, since the end of the seventeenth cen;
tury has been shortened, in writing, still further to cos &N
though this is still usually read as “cosine A.” . O
We see then, that in Figure 49, RS
sin A = E;-::OSA = AC .‘“..\\
AB AB
b o A, oy p - BEY
sin B AR cos B A8
that is, sin A = cos B;, 4B = cos A.

Instead of defining the cosine@fan angle as “the sine of its
complement” it will be seen that we can forget all about the
complement and simply say’ that the cosine of an acute angle in

" . side adjacent to that angle "

a tight tri X ’
Tight triangle eqpa{snt:he ratio hypotenuse

being understood'that “side adjacent to,” means “shorler side
adjacent to.] 2 Tt is well to remember, however, that ihe sing
of any Mmﬁgle is always exactly the same as the cosine of 115
Wmﬂq‘lt@r\zf.' This fact makes it possible to condense tables of
sinesand cosines. If the values of the sines of angles from 0° to
453,’5{125 given at intervals, say, of 10', they will serve, when read
"N reverse order, for the values of the cosines of angles from
45° to 90°, Similarly, if the values of the cosines of angles ft:om
0° to 45° are given, they will serve, in réverse order for the sines
of angles from 45° to 90°.
We now come to the astronomer-mathematician-geo
Ptolemy, who lived about A.D. 150.
Once again the story of a great man must comine

grapher

nce with
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the now monotonous but still regrettable statement that we
know practically nothing of his private life. All we can say for
certain is that Ptolemy was connected with Alexandria, that
he did much astronomical work between a.p. 125 and 150, and
that he wrote several books, one of which is world famous.
Thereis an unreliable legend that he lived for forty years ol the
elevated terraces of the temple of Serapis at Canopus,.hear
Alexandria, and that pillars were erected there withd“record
of his astronomical discoveries carved in them. There were also
untrustworthy legends about him handed dowh by the Arabs,
who held his work in the highest respect, .&jecordmg to one of
these legends he lived to be seventy-eight years old.

Ptolemy’s great bock was called\\by him Mathémaiikés
Suniaxis (Syntaxis), “The Matheinatlca,l Collection,” hence
the title Symiaxis for the work. DiXe Euclid’s Elements and the
Arithmetica written a hundred years later by Diophantus,
Ptolemy’s work conmstet} wof thirteen books. It dealt with
astronomy, plane ands sp«herlcal trigonometry, geometric facts
and methods requisgd for preparing a Table of Chords, and an
actual Table of Chords itsclf. The Syntaxis was accepted by
Greek scholaﬁés the greatest book on astronomy ever written,
hence th;:y came to call it “The Great Collection,” to distin-
guish ififom other, less important books on astronomy. Later,
the, é}aﬁs showed their respect and admiration for the book by
céﬂm g it not merely “‘great,” or even “greater,” but al-majisti,

' }.“The Greatest,” combining the Arabic al, “the,” with an
* Arabic form of the Greek megistos, “greatest.” Hence the Latin

title Aimagest, by which the Syniexis became known through-
out Europe during the Middie Ages. An Arabic version was
translaled into Latin by Gherado of Cremona in 1175 with the
title Almagest, and many other Latin iranslations were made.
The book has been printed in both Greck and Latin several
times, the latest Greek version appearing as recently as 1913.

The Almagest contains detailed particulars of the astronomi-
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cal investigations made by Hipparchus, while it elaborates
Ptolemy’s explanations of *he movements, as he thought, of
the heavenly bodies around the earth. This Ptolemaic Sysiem,
asit is called, was accepted without question by European and
Arab astromomers until it became superseded in the late
sixteenth and early seventeenth centuries by the Copernican
System, or, as some of us would prefer to call it, the System of
Aristarchus. O 2,
It is evident from the way in which the subject is presented
that little of the trigonometry contained in the kook was
Ptolemy’s invention. His main contribution toithe subject,
somewhat like that of Euclid’s main contributidn'to geometry,
was to select, condense and arrange all that, ¥as known about
trigonometry in his day and thus esta fish and preserve for
others the methods and formulas thénin use. It is probable
that he corrected and extended the Tables of Chords that had
been drawn up by Hipparchusdnd Menelaus. He invented the
geometric theorem knowns toflay as “Ptolemy’s theorem,”
familiar to all mathematically-minded readers. This proves
that if a quadrilatera} whose sides are respectively a, b, cand d
unifs in length an.’z‘\id'this order, and whose diagon?.ls are re-
spectively x and ¥ units in length, is inscribed in a circle, then
xy = ac 4+ bdeMathematically-minded readers will be able to
see how this theorem, as applied by Ptolemy to trigonometry,
gave h@’ﬁn the complicated form of “chords”) the equivalent
of ofe™of the most important of all modern trigonometric
fotmulas, The non-mathematical reader should by now be able
o graspthe paragraphs that follow, although he may find that
the change from the Greek use of chords to_the modern use E:f
sines and cosines requires a certain amount of algebraic
manipulative practice.
" Suppose a and B are respectively the angul i
of two overlapping arcs in a circle, and that they terminate at

the same point, a being greater than §.

ar measurements
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Piolemy drew the diameter from the point where the two over-
lapping arcs terminated, and then completed the inscribed
quadrilateral shown in our figure, also drawing its remaining
diagonal.

\\ . Fie. 50

Applying the theorem now called by his name, he then found

[crd.(a — B)] from the equation

(crd. o) [crd.(180° — B)] = [crd.(180° — a)l.{crd. 8) +
ferd.(a — 8)]. (crd. 180°)

In order to transform this equation into its modern form, first

put @ = 20, and 8 = 2¢. This makes the equation become

(crd. 26) . [crd . (180° — 2¢)] = [crd.(180° — 26)] . (crd. 2¢) -+
[erd. 206 — ¢)]. (crd. 180°)
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But we know that sin@ = %{(crd. 26}, so {crd. 26) = 2 siné.
Similarly, (crd. 2¢) = 2 sin ¢; [erd. 200 — ¢}] = 2 sin § —~ ¢)
Again, [crd (180° — qu»)] ferd. 2(90° — ¢)]
= [crd. 2(complement of ¢)}

= 2 sin (complement of ¢)

= 2 ¢os¢h.
Similarly, [crd.(180° — 20)] = 2 cos 8, while, if we take the\
length of the radius of the circle as 1 unit, (crd. 180°) = 2 \

So we may now write our equation as
(2sin8).{2 cos¢) = {2 cosh).(2sin¢) 4+ [2sin # — rﬁ)}

*4sinfdcosg =4 cosfsing+ 4sin (&x‘:ﬁ)
sin @ cos ¢ = cos @ sin ¢ - sin (NF)
sin @ — ¢) = sin b cos ¢ — cgsBsin ¢
which mathematical readers will at onge recognize as one of
the most important and essential f@rmulas in modern trigo-
nometry, N\

It may interest some readers»tq discover for themselves how
Ptolemy applied his theoremto find (crd. AC) in Figure 51,
given (crd. AB) and (cadh, BC), and drawing the diameters
AD and BE. They canthen see how this trigonometric applica-
tion of his has led te.our familiar formula

cos (% ¢) = cosf cos ¢ — sinfsin ¢
It can easilpnbe/proved that (crd. DE} = (crd. AB). Having
found a forﬁmia from quadrilateral BCDE, in terms of chords,
let 29 ﬁxarc AB, 2¢ = arc BC, and then proceed as in the
prevtmé example.]

A8 a geographer, Ptolemy followed the example of earlier
gﬂﬁgraphers in dividing the surface of the earth by a network of
“marallels of latitude” and “meridians of longitude,” as they
are now called. A parallel of latitude is any small circle (sce
page 137) that is parallel to the equator; a meridian of longi-
tude is half of any great circle that passes through both North
and South Poles. The word “meridian” took its rise from the
fact that at moon every day the shadow of a pole will always
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lie in the direction north-south. At that moment, noon, the
sun is directly over every point on an extension of that shadow
that reaches from North Pole to South Pole. So the half of a
great circle lying between North and South Poles came to be
called a meridien, since every point on that line would have

C

Fic. 51

" noon at the same instant every day. The Latin meridies,

“noon,” is a contraction of medius, “middle” and dies, “day.”

The Greeks and their medieval successors conceived of the
width of the world as running from north to south, its length
from east to west. Presumably, this was because the line of the
Mediterranean Sea marked the “length” of the world to the
ancients. Thus it came about that Ptolemy used a Greek word
meaning “width” for a measurement north or south of a fixed
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line, the equator, which word of his was later transizted by the

Latin latitudo (from latus, “broad’), hence our word “lati-

tude” for a measurement to the north or south of the equator.

Ptolemy’s word for “length” was translated by the Latin

longitudo (from longus, “long”), hence our word “longitude”

for a measurement to the east or west (for the past three hun-
dred years) of the meridian through Greenwich. The reason
why this Greenwich meridian was chosen as the startipgﬁoint
for measurements of longitude is suggested on pagedH.

Since these terms “latitude” and “longitude’’ xefer to dis-
tances on the curved surface of a sphere, they(are measured in
angular units, by reference to angles at {]}e center of that
sphere. : \\

In Figure 52, the latitude of point'® Is north (of the equa-
tor) and is equal to the angular measure of arc BA, which
in turn is equal to the angle BQA’ét’ the center of the earth, this
angle being measured on the plane through the North Pole,
the point A, the Scuth ;E"elé’ and the center of the carth. Only a
portion of this plane isShown in the figure, the portion bounded
by the meridian tt\rbﬂgh A and the axis of the earth. Latitude
north of the equator is sometimes indicated by a pesilive num-
ber: thus, 560 means “60° north of the equator.”

At E, thedatitude is south (of the equator) and equals the
angulaf théasurement of arc CE, that is, it equals angle COE.
Latifiide south of the equator is sometimes indicated by a
,ﬂgééﬁve number: thus, —48° means “48° south of the equator.”

{\VAt each of the points B, C and D the latitude is 0°, since
each of these points is on the equator '

Notice the only small circle shown in this figure. Every point
on this small circle, H for instance, has the same latitude as A.
Any small circle like this, drawn parallel to the equator, is
called a “parallel of latitude.” :

Now for longitude. Longitude, as we sav, js measured east or
west of the meridian through Greenwich. As in the case of
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N\ ) latitude, it is an angular measurement. The longitude of A

might be measured by the angular length of arc HA wilk
reference to the angle at the cenler of its own circle, narmely,
angle HSA, but this might lead to errors. In practice, the arc
HA of the small circle bas often to be handled in nautical miles,
1 nautical mile being the average length on the earth of an arc
of an earth’s great circle equal to 1 minute, Since FIA is not an
arc of a great circle, the number of nautical miles along arc HA
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will not be the same as the nwmber of minutes of arc in HA.
To avoid possible confusion it is better to take an arc of the
great circle we call the equator. It will be seen that the angular
measure of arc CB, namely, the angle COB, is the same as the
angular measure of arc HA on its own circle, namely, the angle
HSA. Both these angles are known as dikedral angles. If non-
mathematicians will visualize the angle between the flat sur-

faces or faces of a section of an orange they will be visualizing N,

a dihedral angle. This kind of angle is simply the angle lying
between two intersecting planes. It will be seen that diedral
angle HSA equals dihedral angle COB, so the angulat measure
of arc CB, being, say, 82°, will equal the longitundewof A (west
of Greenwich). This will also be the engulggimeasure of arc
HA with reference to the small circle through’A and H, as we
have seen. But the length HA in nautigalmiles will not be the
same as the length CB in nautical railes. Now, on the eguator,
an arc is an arc of a great circle, of gl earth, so if the angular
measuze of CB is 82°, or 4020/ the distance between C and B
will be 4920 nautical miles{But how can a sailor calculate the
number of nautical mil,es'k}etween A and H if be wishes to sail
on a course that will'be f)arallel to the equator? If the reader
will look at Figure52he will see that the line 8A lies in a plane
that is parallel t¢1he plane of the equator, on which OB lies.
He will alsp.é¢e that SA and OB also both lie in the same plane,
the one, Bounded by the meridian through A and the axis of
the eafth. So SA and OB are parallel lines in the same plane.
It foliows that angle SAQ = angle BOA = latitude of A. Let
s )call the radius of the earth R nautical miles, that is to say,
let any one of the lines AQ, BO, CO, or DO equal R pautical
miles, '
Now let trigonometry come to our aid. Since ASO is a tri-
angle right-angled at S,

% — cos (angle SAO) = cos (latitude of A)
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That is,
AS = cos (latitude of A)
R
So
AS = R._cos (latitude of A)

Suppose the latitude of A is 60°. From a table of cosies we

find that cos 60° = 5 \}
AS=3R=31BO0 O

Since AS = § BO, the circumference of¢'this particular
parallel of latitude is half that of the equator? In other words,
each minute of arc on this 60° parallél has half the linear
measure of each minute of arc on the\equator

Now BC = 4920 nautlcal {iles (see page 153)
& AT = -5(4920) = nautical miles.

It will be seen that i X stands for the latitude along any
parallel of latitude, then éadz minule of arc on that parallel of
latitude will contain cos Fmautical miles.

Before we leave.the nautical atmosphere of the last few
pages to returmto Ptolemy in sun-drenched Alexandria—or
was it Canapis?—let us glance at the sailor’s measure of
speed, thekznol,

AknoPisa speed of 1 nautical mile per hour. Tts name takes
us ba,Qk to the early days of sailing ships. Before the invention
Kmore accurate and more complicated gadgets, a ship’s speed

through the water was found by heaving overboard a log of
S wood, to which was attached a line divided into equal por-
tions by knots. By counting the number of knots paid out
during a known period of time, the speed of the ship through
the water would be roughly measured. Hence the word “knot”
became associated with a ship’s speed. Later, a knot was as-
sociated with a speed of 1 mautical mile per hour. The log of
wood that used to be thrown overboard originated the ex-

pression “log book,” in which, to this day, a record is kept of
the ship’s daily run.
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To return to Ptolemy. He applied his knowledge of geometry
and trigonometry to map-making. The average man who
glances at a map does not realize the difficulty of representing
the curving surface of a sphere on a flat surface, even with the
aid of intricate mathematics, by means of which it can only be
partially overcome. Ptolemy knew infinitely more about such
things as orthogonal projection (see his book, the Analemma) )
and stereographic projection (see his book, the Plawisphaeriiin)
than do most of us. He seems to have applied these miathe-
matical concepts primarily to maps of the stars. 1t fas, how-
ever, from Piolemy that Renaissance map-nidRers learned
their job, without which the great navigationsdf the fifteenth
and subsequent centuries could not have.\igkén place. Unfor-
tunately, although Ptolemy had all théfgcessary mathematics
at his disposal, he based his map of the'earth on a calculation
of the earth’s circumference mag}e'lf)y Posidonius about a cen-
tury after Erastosthenes had ,es’tiiﬁa.ted it to be 250,000 stadia.
Posidonius calculated that.itwas only 180,000 stadia, and for
some reason this errongons calculation was adopted by the
geographer Strabo (é(bo’ut 50 B.C. to AD. 20) and later by
Ptolemy. Since #he latitude of few places was accurately
known, and sinigé the only way of calculating longitude at that
time was hy. ebservations of eclipses (a method suggested by
Hipparckisy, Ptolemy had to rely almost entirely on calcula-
tions 6P distances made by travelers (estimates which were
13,133;31’3’ guesswork), since even the use of the log at sea had not

'titen been introduced. The materials on which he had to wor};
Were unworthy of his theoretical skill in map-making, hl.‘S
methods of transferring the outline of a country from a Spl.lﬁl‘l.-
cal surface to the plane surface of a map differing very little
from those in use today. Figure 53 is his map of the world, as
then known to Europeans.

The obvious errors in the above map notwithstanding, 1118
vastly better than those drawn in the Dark Ages that de-
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scended on Europe after his day. Map-making fell back into
a second childhood; even the belief that the earth was a sphere
was banned by the church, and people were taught that the
world was a flat disk surrounded by ocean. As the knowledge of .
Greek died out in Western Europe, the vast stores of mathe-
matical and scientific knowledge amassed by centuties of

7 ’\. A

\ Fic. 33
\ ’\' 5 Piolemy's map of the world {c. A.D. 150}
A '
feek’ philosophers, mathematicians, astronomers and ge-
Jogtaphers faded away. It was not until the thirteenth century
3 ‘that map-making began to recover, not until the fifteenth cen-

tury that Ptolemy’s principles of map-making were reintro-
duced into Europe. The demands of navigation brought about
further improvements, and Ptolemy’s 4lmagest became widely
known once more in Europe, being one of the earliest books to
be printed. In 1500 a Basque named Juan de la Casa, a com-
panion of Columbus, drew a map of the world which for the
first time showed the recently discovered coast of America.
With the story of Ptolemy we come to the end of the contri-
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bution made to trigonometry by the Greeks. From his day
until the Renaissance the only real advance in the subject
came from the Hindus and the Arabs. After the fall of the
Roman Empire in the face of attacks by hordes of barbarians,
all branches of mathematics, as we have seen, suffered from
the stagnation that paralyzed thought in Europe.

We have already seen the far-reaching results of the wWork
done in India by Aryabhata in developing ideas that were to
lead to our modern concept of the sine of an anglesWe now
come to the story of the invention of two other trigonometric
ratios, which, ke the sine, grew out of length§.y"

As early as a.p. 400 Hindu writers wer showing an interest
in the lengths of shadows, but it was léftyto the Arabs to de-
velop the idea of trigonometric “lengths” connected with
shadows. By such a “triponometrie’length” we mean one in
which the length of a shadow is\Connected with the size of an
angle. N
Before World War II, there was an Arabic manuscript in
Berlin—whether it efists today is doubtful—written toward
the end of the niath'eentury. It contained a list of the lengths
of two kinds of, sHadows, both equally important, and both
treated sepafatély, though side by side. One kind gave the
length of-the shadow cast on horizontal ground by an upright
gnomafy the other, that cast on a vertical wall by a “turned”
guoffien, or one that had been placed horizontally so as to
fort a sundial on the wall of a building. Medieval writers came

8 call the shadow cast by an wupright gnomon the umbra recta,

that cast by the “iurned” gnomon the umbra versa.

Figure 54 shows both kinds of sundials. Imagine that the
one on the left is on horizontal ground in the garden of a house
that also possesses the one on the right, on one of its walls.
The gnomon on the right has been purposely made the same
length as the shadow (umbra recta) on the left for reasons that
will appear shortly. Since the sundials are side by side, the
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altitude of the sun will be the same in each case. Moreover, as
we saw when discussing Eratosthenes and his calculation of
the earth’s circumference, the sun’s rays are parallel to each
other when they reach the earth, to all intents and purposes.
So in a case Like this, the shadow on the right (umbra verse)
Q

T

Rays from sun [\
Teach earth as K
paraliel tines
[ |
a9
a4
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Umbra, SRecta
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)
will be the same length as the gnomon on the left. This re-
ciprocal cofitection appears to have escaped the notice of Arab
and medx:wl mathematicians, probably because it would be
very ﬁnhkely for a “turned” gnomon to equal the length of 2
boring “umbra recta.” In any event, they did not de-

- 4 '~.Va°p the idea as we do today, and as we shall shortly do in this
% book.

Toward the end of the sixteenth century, the “shadow”
names #mbra recia and umbra versa began to give place to other
terms. A writer called Thomas Fincke wrote a book in 1583
in which he called the umbra versa, still a length and not yet 2
ratio, by the name of “tangent.” The most probable explana-
tion for his choice of this term is suggested in Figure 55. '

If the “turned” gnon on on the right of Figure 54 is regarded
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as the radius of a circle, and if that radius is regarded as having
rotated through the angle a in Figure 55, the umbra verse will
form part of the tangent to the circle at the point where the
gnomon-radius meets the circle. The name “tangent” was
adopted by the well-known mathematician Pitiscus in 1395
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and has been.sed ever since. “Tangent of A” is now abbrevi-
ated to “tamA.” |
It wa.glﬁﬁring the lifetime of Pitiscus that mathematicians
were,:\ﬁ;sf beginning to develop the idea of ratios instead of
1§n§ths in trigonometry. Since the sixtcenth and seventeenth

. (Cenituries mathematicians were familiar with the Arab custom
\ Jof stating the length of a shadow as 2 certain number of times
the length of its gnomon; it was natural that in turning the
tangent of an angle into ratio form, its length should be com-
pared with the length of the gnomon-radius in Figure 55. Thus,

in the right triangle shown in Figure 56, if BC is the umbra
versa, or “tangent,” and AC the gromon, or “radius,” the ratio
between these two lengths that can be connected with the
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angle A (which would be the altitude of the sun if we were
discussing a turned sundial) will be

tan A = E,C_.
AC
A N\
\*\ N o
A gnomon C oA

N
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So we see that, forgettjn’g‘ai] about shadows and sundials, the
tangent of an acutg-angle in a right triangle is equal to the
ratio O
%\ “side opposite that angle
. ([shorter) side adjacent to that angle
Now, in’etir'last figure, angle B is the complement of angle A.
So the@afigent of engle B will be the same thing as the langent
of *téa\.wmpiemem of angie A. So, using our new definition of a
Jfangent ratio, we see that
»\:\ tan B = fangent of the complement of A == %g

Like that other long-winded expression “sine of the comple-
ment of A” and like Alice in Wonderland, on the occasion
when she remarked “I must be shutting up like a telescope,”
the clumsy expression “tangent of the complement of A” came
to be called the “complement tangent of A” which in turn
came to be written as “cotangent of A” (again, it was Edmund
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Gunter, the originator of the word “co.sine” who thought of
this one), and finally as “cot A.”
Forgefting all about complements of angles now, we can de-
fine the cotangent of any acute angle in a right triangle as
' (shorter) side adjacent to the angle

: . side opposite the angle A\
Reverting to Figure 56 once more, we see then that ("
AC & "~ }«.
tan A = —; cot A = -— o
AC CB (@
ta.nBzéE;ootB=£]§
CB ACOD

In other words, the tangent of an angle eq'é'a;ls the cotangent of
its complement, and is also the reciprocal’of its own cotangent.
The last part of this statement simply means that if a tangent
ratio of an angle is written ups}dlé’down, it gives the cotangent
ratio of that same angle. [If j:j]ié‘product of two numbers equals
1, each number is the reciprocal of the other. Thus, the follow-

o . 3
ing pairs of numb@a}e respectively reciprocals: 5 and —;
2 (or ~2~) and %;.8and 1-25; 2 and E]

1 N b a

Notice thafdlthough fan x is the reciprocal of cof =, this re-
ciproca‘i\i:aﬁtionship does not apply to siz x and cos %, since
theseratios do not involve the same pair of sides of 2 right tri-
apgle as do tan x and cot x.

“\'Tet us return for a moment to shadows and sundials in order
fo clear up one point that was put off until the meaning of the
terms “tangent” and “cotangent’ had been discussed. How
did Arab and medieval mathematicians actually express the
lengths of shadows? First, consider the length of the umbra
recta shown in Figure §7.

In this figure BC represents the known length of the gno-
mon, CA the length of the umbra recia that has to be deter-
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mined when the altitude of the sun is known to be A® In the
Middle Ages, this would be given in tables as
CA = pe.5ne of complement of A

sine of A
Mathematical readers will see that this is equivalent to saging
that the length of the umbra recia was equal to the }cingth of

umbra recta
{"‘cotangent’”)

~\ Fic. 57
i 3

the gnomon m\tlphed by the cotangent of the altitude of the
“sine of complement of A

sun. Thoseswho may not know why
sine of A

ON
is hﬁsame as “cot A” can easily find out by looking at Figure
58and the explanation that goes with it. For simplicity, small

"\.‘le'tters have been used for the lengths of the sides of the tri-
~/ angle, each small letter following the capital letter at the angle

opposite its side.
1t will be seen that

b
sine of the C(?mpiement of A _ cosA__cnzl_)-;_ézl_)'___COtA
sin A sinA a ¢a a.
c

Readers may be interested to find out for themselves how
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medieval mathematicians, knowing only sines, would have ex-
pressed the length of the umbra versa when the length of the
gnomon and the altitude of the sun were known. In modern
terms, the length of the umbra versa would be the length of the
gnomon multiplied by the tangent of the altitude of the sun.

Greek mathematicians, as we have seen, had Tables of
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Chords, but they had nothing: Sorresponding to the tables of
cosines, tangents and cotangenits that we possess. Neverthe-
less, so capable were thqgu that they were able to express the
equivalent of a cosine; a8 some readers may have found out on
page 149, while a-hint of the equivalent of a tangent occurs as
early as Aristarchub, as we hinted on page 113.

During thé Middle Ages, tables of the lengths of sines and
of the equiva; ents to tangents and cotangents became available
to mathématicians.

Thé Introduction of the mariner’s compass into Europe and

A@é\'éonsequent long voyages undertaken across open scas
Ngreatly stimulated the study of navigational mathematics. In
the fifteenth century, trigonometric tables, which included
values of two new ratios, were prepared for navigators.. One
of these ratios is now called the secant, though at ﬁra:,t it was
usually called kypotenusa, being so known fo Copernicus a.n‘d
to his fellow-worker Rheticus. In a book of trigonometric
tables published by Rheticus in 1551, values of this new ratio
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were included, under the title of Aypotenusa. In 1583, Thomas
Fincke, the inventor of the word “tangent,” called this new
ratio the “secant.” Although this term was not immediately
adopted by other mathematicians (Vieta, for example, in 1593

B

radius

Frc. 59

preferred to use the word trams-sinuesc) it eventually came
into general use. The probable reason for Fincke’s choice of
this name is suggested in Figure 59.

Although, in geometry, a secant is a line that cuts a circle at
two points, sixteenth-century mathemiiticians agreed to ac-
cept this word as sufficiently descriptive of AB in the above
figure,
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Ignoring the circle in Figure 59, and thinking only of the
right triangle in that figure, we nowadays express the secant
of angle A as a ratie by comparing the length of the hypotennse
AB with that of AC, the shorter side adjacent to the angle we
are discussing, “Secant” is abbreviated to “sec.”

z
A Fie. 60
oS

N

. 0 AB . .
Tt will be seen thét;in Figure 60, sec A = ic that is, the ratio

between the(}i}ﬁ;gth of the hypotenuse and that of the shorter
side adjaeent to A. .
Furthes, 'we see that since B is the complement of A in this
Seits,
\ 3

sec B = %—]é- — “gecant of the complement of A”

= “cosecant of A.”

Tn America, “cosecant” is abbreviated to “csc”’; in England,
to “cosec.” No final agreement on this abbreviation has yet
been reached.
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We see, then, that in ngure 60,

sec A = AB = reciprocal of cos A;
AC
AB

csC A = T reciprocal of sin A;

AB
scc B = — = reciprocal of cos B; %\,
BC ™

AB « \
st B = —— = reciprocal of sinedi
AC P G

In the sixteenth century many mathéiﬁaticia.ns occupied
themselves in drawing up trigonom@€ tables. In order to
avoid giving the various lengths ipﬂs}rins which would involve
difficult and cumbersome fractipns, they undertook stupendous
arithmetical multiplications @hd divisions in order to obtain
greater and greater accyracy. Thus, Rheticus divided the
radius into 10,000,000.8nits, and then gave lengths of all six
trigonometric ratiosd#s seven-figure numbers for angles at
intervals of eveps ten minutes. This work was published in
1551, In 1579(Vitta extended these tables so as to give the
values of @].N\hese ratios at intervals of every minute.

Rhetigns’was a professor of mathematics who was an en-
thusiasiic supporter of Copernicus. Tt was he who superin-
t?&‘ia{ the publication of the book that was handed to the

\.ﬂ’v‘ihg Copernicus (see page 110). His real name was (George
, “Joachim, but he is always known as Rheticus because he was

born in part of the Austrian Tyrol that had originally been
settled by the Rhaeti tribe. After the publication of his trig-
onometric tables in 1551 he undertook the siill more exacting
task of drawing up ten-figure values of ali six ratios, based ona
radius of 10,000,000,000 units, for angles at intervals of every
ten seconds. He died before they could be published, but in
1596 they were printed at the expense of the Flector Palatine,
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Frederick IV (the ruler of the Palatinate, a district on the
Rhine). As a mark of appreciation they were published under
the title Opus Palatinum, by which name they have been
known ever since. These tables are considered the finest
achievement of the greatest computer of this type of trig-
onometric tables. Tt may well have been the thought of the

enormous labor involved in drawing up tables like these byA

methods that involved the constant multiplication and divigion -
of huge numbers that induced Napier to look around, ‘a‘glﬂ—-
after a search of twenty years—to.find an ingenious\way by
which multiplication could be efiected by additian, and di-
vision by subtraction. We shall glance at this ifvention of
Napier in our next chapter. It is said by Pitiscus that Rheticus
employed computers to work with him foxfwelse years in order
to produce his great tables. There 8,4 copy of the Opus
Palatinwm in the British Museum,Librefry, among others; the
trigonometric tables occupy 733 ‘pages, each closely printed
page being 9 inches by 15 inches.

Instead of speaking of the'sine, cosine etc. as “trigonometric
ratios connected with, dtigles,” we can use the neater expres-
sion “functions of ;Lh*g}e;s.” When two variable quantities are
connected in such.d way that the value of one of them de-
pends on the Haltie of the other, the first of these quantities
is said to he a}’hmﬁim of the second. Since the value of the first
quantitghﬂei}cnds on the value assigned to the second quat}tit)",
itis ‘eé;lzled the dependent variable, while the second quantity 18

called’ the ndependent variable.
< We shall meet with the term “function” in other branches
of mathematics hesides trigonometry. Thus, in algebra, “8x,”
for example, is a function of x (if x can vary in value in any one
problem) since the value of 8% depends on the value asmgz.acd
to x. In the same wdy, 2p* 4+ 5p — 0isa functionof p,ifpisa
variable. Tt will be seen that sin A must be a function of A,

QY
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since the value of s7n A depends on the value of the angle A.
Similarly, cos ¢ is a function of ¢; tan @ is a function of §, and
$0 01l

In mathematical shorthand, “function of %’ is written
“f(x}.”” This symbol may indicate any expression in terms of x,
such as 8x, or 5x% or Ox* — 4x + 3, and so on. If we feet the
expression “f(p) = 5p? 4 2p — 8” it simply means that the
particular function of p we are tc consider is &p’ 4 2p — 8.
The symbols f(z), F(z), ¢(z) were used by’ Euler in the
eighteenth century.

So when we speak of “tables of trwon&rhctnc functions” we
shall simply mean tables of the vahjeyof sines, cosines, tan-
gents, cotangents, secants and cosésantq of angles.

In the chapter that fo]lows,,\w shall see how a surprising
labor-saving invention, orlgmally intended to simplify the use
of tables of tr1gonometm: functlons had {ar-reaching conse-
quences In other brat;,t;hes of mathematics.
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CHAPTER V

The Invention of Logarithms

“Seeing there is nothing \right well-beloved Students of . (\

Mathematics) that is so iroublesome to mathematical practicey
nor doth more molest and kinder calculators, than the mza.{;ti-
plications, divisions, square and cubical exiraciions of great
numbers, which besides the tedious expense of timgdre for the
most part subject to many slippery errors, I begast therefore fo
consider in my mind by what ceriain aﬂd;@@iﬁv art I might
remove those hindrances.” (Napier: the-opening words of
the Descriptio.} O

AN

*al

T 15 probably true that nel g'réat mathematical invention,
I with one solitary exception, has resulted from the work of
any one individual, Ofis ‘mathematician sows 2 seed which
starts a train of thox}g}tt'hl the minds of others. Eventually, it
may be after yea,rs;. and even centuries have elapsed, the seed
develops intof il and vigorous life, and, as & consequence,
mathemagi,gé,}}noWledge and power are advanced another
step. T];Qsl i¢ the normal course of events. The one solitary ex-
Ceptio'n: is the invention of logarithms.

i July, 1914, less than a week before the first great tragedy
Sof/modern times, the outbreak of World War 1, delegates ar-
rived in Edinburgh from all over the world to attend an inter-
national congress held to commemorate the publication, three
hundred years previously, of a small book of 147 pages, 90 of
them filled with mathematical tables. The book, written by
John Napier, of Merchiston, near Edinburgh, was entitled, in
169
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the scholars’ language of his day, M. iwrifics Logarithmorum
Canonis Descriptio, “A description of an admirable table of
logarithms.” _

In his inaugural address to this international congress, Lord
Moulton said, “The invention of logarithms came to the world
as a bolt from the blue. No previous work had led up to it;
nothing had foreshadowed it or heralded its arrival It stands
isolated, breaking in upon human thought abrnptly, withont
borrowing from the work of other intellects ordollowing known
lines of mathematical thought. It reminds ahe of those islands
in the ocean which rise suddenly from gfeét depths and which
stand solitary, with deep water close '&}()\und all their shores.”

To the preparation of this littleXbook of 147 pages Napier
had devoted twenty years of sevore and steady labor. Seldom,
if ever, were twenty years better spent. They were to exerta
profound influence on methdds of calculation and to be of in-
estimable value to maukind, Thanks to Napier’s mathemati-
cal genius, power of fcﬁncentrati011, and tenacity of purpose
mathematicians, sciéntists, astronomers, actuaries, engineers
and CountleSS{:Jthers were to be saved untold hours of time
consuming, mechanical computation. More than this, whole
fields of ge\thematicai knowledge, then unknown, were to be
openegip, illuminated and clarified by the concept invented

b'{.;Ithier.

: \ CJohn Napier was born in 1550, his father, Alexander Napier,
.s,\\"bcmg then only sizteen years old. His family was old and

respected, well known for its sense of responsibility to its owh
community as well as for its sturdy defense of its own indi
vidual rights. Several of John Nanier’s forcbears had been
provost (mayor) of Edinburgh, an office, in those wild and
stormy days, that demanded ability, strength of characteh
and considerable Scottish tenacity of purpose.

Napier was educated at home until being sent, at the age of
thirteen, to the University of St. Andrews. This was the ysual
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age of entry to a university in the sixteenth century. He was
not graduated at St. Andrews, but left Scotland and studied
abroad, again a normal procedure in those days for thesonof a
Scottish man of means. He remained abroad for several years,
but there is no record as to where or what he studied. In 1572
he married and settled down to live the life of a country gentle-
man on an estate in Stirlingshire owned by his father.
Scottand was then torn by bitter religious hatreds and quart
rels, and Napier, true to the age in which he lived, threw kim-
self into them with burning zeal. Presumably alarmegby’ the
menace to his beloved Protestantism presented \bjy:“Roma.n
Catholic Spain, an alarm only temporarily dispelled by the de-
feat of the Spanish Armada in 1588, he emt%ht‘ed Archimedes
in devising terrifying instruments of war whith, as he quaintly
put it “by the grace of God and workeof expert craftsmen” he
proposed to build “for defence of thisTland.” These weapons
included a burning mirror with yvﬁic:h he proposed to destroy
the enemy’s ships; a piece of ,q.rtillery “destroying everything
round the arc of a circle” and guaranteed by its designer “to
kill thirty thousand Turks without the hazard of enc Chris-
tian” {a truly splensgfl‘ Christian weapon, though not from the
point of view, possibly, of thirty thousand unbelieving Turks);
a round metal Qﬁe:riot, a kind of forerunner of the tank, pro-
pelled by man-power and so constructed that its occupants
could ma¥e“it rapidly and easily while firing through small
holes,&f:, and finally, “devises for sayling under water, with
d%Ygfs;‘ other devises and stratagemes for harming of the
enemyes.”

"Napier’s destructive weapons seem to have missed fire, not
advancing further than the plans he drew up {and which are
still in existence). Not so a book he published in 1593 in defense
of Protestantism, in which, by thirty-six propositions, each
duly proved by reference to the Apocalypse, he showed to his
own complete satisfaction, and apparently to the complete
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satisfaction of thousands of readers, that the Pope was Anti-
christ and that the Creator proposed to end the world between
the years 1688 and 1700.

The book proved an immense success, passing through
twenty-one editions; to his dying day Napier regarded this
book as his greatest service to mankind; no international.r\on—
gress, however, assembled to honor its tercentenary.

‘It was shortly after the publication of this book that Napier
turned his mind to mathematics. After twenty yéars, he pro-
duced, in 1614, the book which has brought himundying fame
and respect, and earned for him the gratittide of mankind.
(One of the delegate speakers who honored the memory of
Napier in 1914 was Salih Mourad, th@ representative of Tur-
key!) L
In Napier’s day, as we havésdeen, the sine of an angle was
still regarded as a length. To avhid clumsy fractions, this length
was calculated in very sm,all units. As we saw in our last chap-
ter, a compiler of valies of trigonometric functions would
choose a very large nifnber such as ten million, or even ten
billion, for the mlmber of units in the radius. By calculating
the length, s&g\ 6t the half- chord, or sine, in terms of these
units, he wduld be able to tabulate its value to a very close
approximdtion without using fractions.

Insxigonometry, it is often necessary to find the product of
tKO“S}neS Since, under the system we have described, the

\Nalues of these sines would be represented by numbers which
< ight involve seven or even more figures, their multiplication

would require the expenditure of much time and labor. Napier
decided to try and find a method by which this labor might be
lessened—a remarkable undertaking, when it is remembered
that multiplication had for centuries been regarded as an es-
sential and unavoidable process, and still more remarkable
when it is remembered that no modern algebraic symbolism 0F
analysis was then available for Napier. Fortunately, however,
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although armed only with arithmetic, and, later, with geo-
metric representation of ratio and proportion, Napier pos-

sessed such power of application and so indomitable a will that

e was able to overcome all handicaps, and discover not merely
simple processes in place of multiplication, division, extraction
of roots, etc., but also some of the most important and funda: £
mental ideas and principles later to be established in other
branches of mathematics. At the outset of his quest, hc\'v??aé‘
concerned only with the multiplication of sines, but as his
work progressed, Napier came to realize that he hadlightedon
concepts that were by no means restricted to. frigonometric
computations, but had a much wider field of application.

Let us leave Napier and his laborioys, aFithmetic for the
moment, and discuss the meaning arid ‘significance of log-
axithms, from the modern point of viep, Thanks to modern alge-
braic ideas and symbolism this ise simple task. Without this
equipment, it bristles with difficulties and complications, as
even the cursory glance wé shall give Napier’s methods will
show us.

If we may use the Janguage of metaphor, we can liken Napier
to a pathfinder Wﬁa\aione and with crude climbing equipment
clambered to.fhé summit of a high mountain. The path he
discovered Avds steep and difficult, but by his aid others were
able to idllow in his footsteps. 1t does not detract in the least
fmm\tﬁetgrelatness of his achievement that having artived at
the\top of the mountain, he and his friend Henry Briggs were

:Eﬁéh able to see a better track to the summit on which they
Jstood, a track they subsequently always followed. When death

robbed the world of Napier, his friend coniinued to guide
newcomers along the better track, and to make that track still
easier. As time went by, and algebraic concepts and symbolism
were developed, the in' rention of new equipment, unheard of in
Napier’s day, made both the ascent of this track and also the
improvement of it extremely easy matters.
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To acquire enough of this necessary modern equipment to
understand the significance of logarithms is very simple. It
requires no greater mathematical background than that pre-
sented in Chapter 11T of this bock, since a logarithm nowadays
is simply an exponent. In Chapter ITI we saw how “a times a”
was first written as aa, then as a® Similarly, “a times a timps a”
was written as aaa, then as a® Suppose we wish to tnultiply
a? by a® This will be equivalent to multiplying aa b3 Aaa, that
is “a times 2 by “a times a times a.” Clearlythis result can
only be aaaaa; or a’ Now omit the mtermgc{mtc steps. We
have found that ¢

a? X a® = a’ \

In other words, the product of the'séeond and third powers of
the letter a is the fifth power of {{at letter. This is an example
of one of the laws of cxponents "laws that were, if not com-
pletely unknown, at least nof*formulated or generally known
in Napier’s day. This pqrtmular law, which applies to powers of
any letter, is that the“product of two or more powers of the
same letter is anotl:"\ér power of that letter which is cbtained by
adding the given exponents of the letter.

The ramzﬁ\lons of the laws concerning exponents extend
throughm{t fnodern algebra. The easiest way for the non-
mathematician to grasp the significance of some of them is to

udy particular cases in which the letter a is given a definite

xale, such as 2. Consider the series of numbers
QY 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, etc.
' These numbers may nowadays be written as

2,22, 25 24 2528 27 28 29 910 etc.
(1) By multiplica.tion, we know that, say, 8 X 64 = 512.
In other words, using the lower line of numbers, 2* X 2¢ =
25,
Now, here, we have made use of logarithms. we could, if we
wished, say that “3 is the logarithm of 8 to base 2; 6 is the
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logarithm of 64 to base 2; 9 is the logarithm of 512 to base 2,

although it would not be a practical proposition to use 2 as a

base since no logarithmic tables have been calculated to such

base; it would therefore be impossible to look up the logarithms

of numberssuch as 3, 5, 7, 9, 10, 11, 12, 13, 14, 15, 17, etc. 1o,

basc 2. Most logarithmic tables are based on 10. To this base, \

the logarithm of 10is 1, the logarithm of 100 is 2, the logarithm

of 1000 is 3. Our tables tell us that the logarithm of, sa,y* 510

this basc 10 is -69897. All this means is that 1078897 <3 5.

Our illustration of logarithms to base 2 is, hqwever, a per-
fectly good example of the law that states “the ]})ganthm of a
product equals the sum of the logarithms ofithe factors of that
product.” Thus, 23 X 25 X 27 X 2¢ —,21\\-" 524288 (from a
table of 1ogar1thms) o

By using logarithms we have cktmged tke process of multiplica-
tion lo that of addition.

(2} By division, we know tha.t say, 256 + 4 = 64. In other
words, 25 + 22 = 25, This is an example of the law that
states “the logarit n'of a quotient equals the logarithm of
the dividend m&’ﬁzs the logarithm of the divisor,” or, since

28
28 2° mea‘ns the same thing as the fraction, — 5 “the log-

arith :Qf a fractlon equals the logarithm of the numerator
migué%e logarithm of the denominator.”
Byusing logarithms, we have changed the process of division to
t}zat of subtraction.

{3) By arithmetic we know that +/1024 = 32. In other words,
/2% = 25; the logarithm 10 has been divided by 2 to find
the logarithm of the square root.

By arithmetic we know that /64 = 4. In other words,
/2 = 2% the logarithm 6 has been divided by 3 to find

the logarithm of the cube root.
These are examples of the law that states “the logarithm
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of the root of a number equals the logarithm of that num-
ber divided by the index of that root.” [Remember that
v/2% stands for /2]

By using logarithms, the extraction of any root can be per-
Jormed by a simple process of division.

So much for the meaning and significance of ioga.rlthms As
presented in modern algebraic symbolism their gimplicity
makes us liable to underestimate the magnitude(of Napier’s
achievement. The subject was far from s1mp1e “ag ‘approached
along the only lines open to him. ¢

Let us glance at the way in which Napler expressed his con-
cept of a logarithm. In a short book“called the Constructio,
published in 1619, two years after\h’é death, Napier explams
how he reached his conclusions@hd calculated the tables given
in the Descriptio. In the latter beok he gave only such explana-
tions as would enable mathermAticians to grasp his new concept
and experiment with his tables. He added the modest remark
that he did not intend to explain his methods unless other
mathematicians found his invention to be of value.

The Consiruétio’ shows how Napier gradually developed his
ideas over aNlong period of time. One gets the impression that
the germ(8i his idea grew from a consideration of arithmetic
and geometric progressions. An arithmetic progression is a
zgabf numbers, or terms, such as the particular example we

idered on page 70. In general, these terms must increase

“or decrease} in such a way that the difference between any
"\ term and the term that precedes it is always the same. [Napier

does not mention decreasing arithmetic progressions, as the
only type he made use of was the progression 0, 1, 2, 3, 4, 5,
6,7. .. ]

A geometric progression is a series of numbers, or terms,
which increase or decrease in such a way that the ratio between
any term and the term that precedes it is constant. Thus, the
numbers 1, 2, 4, 8, 16, 32, 64, 128 . . . form a geometric



£

THE INVENTION OF LOGARITHMS 177

progression with common ratio %, Similarly, the numbers

729, 243, 81, 27,9, 3, 1 form a geometric progression with com-
mon ratio §. :

Napier was doubtless familiar with a fact that had been
known to mathematicians certainly ever since the time of
Archimedes, namely, that in a geometric progression commencs
ing with 1, the product of any two terms is itself one of the
terms in the progression. Take, for example, the progtéssion
1, 3,9, 27, 81, 243, 729 . . . If we label each of thesterms in
numerical order, commencing with zero as the labéPef the first
term, it will be seen that the product of the tcrm‘lfdr example)
labeled 1 and the term labeled 3 gives the terh labeled 4; the
product of the term labeled 2 and the tefm abeled 4 gives the
term labeled 6, and so on. Clearly, there is some connection
between the numbers forming the ‘géometric progression and
those forming the arithmetic pro'g;i'ession 0,1,2,3,4. ..

A geometric progressionQWé.'s’Napier’s starting point in his
long quest. It has been, argied that a geometric progression
was therefore the seed from which the concept of logarithms
grew, and that Napies’s invention must accordingly be classed
with other math&natical discoveries as being the product of
many minds.\Buf the whole concept of his logarithms was so
far removed from the concept and implications of a geometric
preg egsidn that it would be equally far-fetched to credit the
invenitdr of the number scale with the invention of logarithms
siftiply because Napier made use of that number-scale.

\ D Napier’s first idea secms to have been to draw up a geometric

 progression commencing with the terms 10,000,000, 9,999,999,
and continuing down to the region of zero, each successive
w of its preceding term. By labeling these

term being
10,000,000 _
terms by successive terms of an arithmetic progression he

would have linked together a geometric progression with
“label numbers” forming an arithmetic progression. The sum
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of the ¢ Jabel numpers”’ of any two terms in his geometric
progression would have given the “label number” of the
~ product of those two terms, which would then have been found
alongside it:s “label mumber.” Before we see how Napier dis-
covered the impractibility of this plan, let us find out why he
chose 10,000,000 for the first term in his geometric progtession.

In the Construciio he gives us the reason for this chgice. It -
was the number of wnits chosen, in the best trlgonometr:c
tables of his day, for the length of the radius on whose length
the Jength of the sine depended. He says, “Igstead of 100,000,
which the less experienced make the greatest sine [sinus tofus,
the sine of 90°; which equalled the radius{the more learned put
10,000,000, whereby the differences oall sines is better ex-
pressed. Wherefore wlso vre use: the§ame for radius and for the
greatest of our geometrical proportions.”

This raises an intelestlng Yuestion. What table of sines did
Napier use? There weresdeveral he may have possessed. He
tells us he was occuglcd, for twenty years in compiling the 90
pages of loganthmxgtables in the Descriptio. Since he published
this book in 16<4; 1e must hzve commenced working on it
about 1594 I that year there were several trigonometric
tables in emstencv One of thes: was the table, or canon pub—
lished ifi 1551 by Rheticus. This table, however, as we saw,
gave<he values only at ten-minute angle intervals, so it would
have been useless for Napier’s purpose, which was to supply
3 Inganthm::. for the sines of angles differing only by one minute.

S Vieta, however, had extended this table, in 1579, to include

values of the functions of angles between 0° and 90° at intervals -
of one minute. Since both these tables were based on a radius
of 10,000,000 units, it scems probable that Napier used Vieta’s
extension of the original tables drawn up by Rheticus in 1551.
The great Opus Palatinum of Rheticus was not published until
1596, as we saw, and Napier cannot have been aware of its
existence when he discussed the choice of radius made by
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“more learned” mathematicians. Otherwise, when emphasizing
the greater accuracy obtained by taking 10,000,000 units for
the radiuve he would surely have given first place to tables
based on a radius of 10,000,000,000 units, as were those in the
Opus Palatinum. His expression “less experienced” was pos-
sibly a veference to the compilers of the first two tables of
trigonometric functions published in England, one in 1590, the,
other in 1594. His words “more learned” almost certainly(fefer
to Rheticus and Vieta, ' P\ .
Having chosen 10,000,000 as the frst term in higgenretric

progression, Napier proceeded to calculate onerhundred suc-
8,999,099

cessive terms, each term after the first bff% fﬁ?@?ﬁOUO of

term preceding it. If the continuation o.I}his plan had proved
possible, an enormous array of numbefs in geometric progres-
‘sion would have been available,®ach so close to the preceding
term that every value given in w table of sines would have been
included, as well as million® of other numbers. By choosing
this common ratio, Napier saw he would get a progression in
which the second ¢ e(m: 9,999,999, would be 1 less than the
first, while the $gap” between each succeeding pair of terms
would gradually become smaller and smaller. As the calcula-
tions proceeded, however, the number of terms required to filt
the gap(between any two consecutive integers would become
great&:nd greater, until eventually the computation would
i}l\{h‘[\fe many millions of separate calculations. In the. Con-

Strictio, Napier reproduces the actual figures he used in the
earliest stage of his work before he abandoned this procedure.
It is here that we come across the first known example of the
use of a period for indicating decimal fractions.

Decimal fractions are the most important development of
arithmetic since the introduction of Hindu-Arabic number-
symbols. They enable parts of a whole to be added, sub-
tracted, multiplied and divided, etc., as whole numbers, and
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thus avoid the.clumsy and complicated methods involved in
handling other fractions. Their use was first clearly advocated
by a mathematician named Simon Stevin of Bruges, better
known as Stevinus, in a work published in 1582 and called
Lo Practique d' Arithmetique. Many previous mathematieians
had almost, but not quite, hit on the idea of decimal fractions,
For instance, tables of square roots had been dratm up for
numbers which had first been multiplied by 1,060,000. The
roots as given in the table were, of course, 1080 times too
great, but by this method it was possible tofavoid the use of
fractions, at least for approximate valuesdfthe roots. We have
seen the somewhat similar method adopted by compilers of
values of trigonometric functions. ‘Theidea “hat lies behind our
present “decimals” was only gradually reached, the process of
thought involved in its deyelopment covering hundreds of
years. Stevinus had suggested a clumsy notation for decimal
fractions, whereby 23-548) for instance, would be written as
BO5014@380
Napier seems to. have been the Brst writer to use a period to
mark the end¢of the whole numbers, and to realize that the
decimal fractions occupied places whick could be regarded as
lying onsa’extended abacus, to the right of the units’ wire. In
the Comsiructio, Napier said, “In numbers distinguished by a
peti6d in their midst, whatever is written after the period isa
ffaetion, the denominator of which is unity with as many
\iphers [zeros] after it as there are figures after the period.”
™ (Macdonald’s translation). Here is vet another example of a
very simple idea that was to have tremendous CONSEqUEnces.
In this connection, it must be remembered that the Constructio
was not published until two years after Napier’s death. So it
is impossible to say with certainty whether these sentences
were inserted by Napier or by Briggs, who revised the work
before publication. The tact that N apier does not use a decimal
point or its equivalent in his Descriptio seems to indicate that
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this simple yet fruitful invention is due to Briggs. On the other
hand, it is difficult to imagine how Napier’s calculations (which
we shall now consider) could have been carried out without the
use-of the decimal point.

n order to calculate the terms of his geometric progression
with as little labor as possible, Napier successively subtracted
from each newly added term an easily computed fraction of,
that term, namely one-ten-millionth of it. An extract from ;PéQ
Constructio will make his method clear: S

[First term of required geometric progression: 10,000,000.
9,999,999 RAZ
10,000,000 \%

Common ratio:

Subtract b ofeachterm successi‘w}ﬁ)‘.]
10,000,000 LV

£0000000-0000000™
1-0080000
"9999999:0000000
540099999

0g55998-0000001

\ -9009908

>, 9999997-0000003
O -9099997

N\ I it et

N 9999996-0000006
Nap'bﬁﬁféceeded in this way until he reached the hundredth
term,  which was approximately 100 less than the first term,
beiig 9,999,900-0004950.

\\‘: At this point, Napier seems to have realized that some otber
tnethod would be necessary. It was at this stage that he intro-
duced a geometric representation of ratio and proportion In
order to discover more about the nature of the problem he was
investigating. In other words, he began to apply analysis to his
problem, though he had no algebraic symbolism as 2 language
in which to express the stepsin his analysis. His original system
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of logarithms and his methods of computation have long been
abandoned; we need only glance at them sufficiently to enable
us to grasp their underlying principles.

Napier’s study of the problem led him to imagine the move-
ment of a point along a line whose length represented 10,-
000,000. Suppose AZ in Figure 61 is the line, and suppese a
point moves from A toward Z in such a way that.its‘mitial
velocity at A steadily decreases. The successive “distances
covered in equal intervals of time would becomeYess and less,
but the ratio between any two adjacent pa,ir.,f:f’ these distances

L L 1 L ] I L b “~\\___.__
A B C D E F G RV Z
K7\
L 1 ‘H’\“ 1 i
As B, C. D, . WK, F, G, H.

-

R $ Fic. 61

would always be the same, since the point was conceived of as

~ moving with a steadily decreasing velocity. Notice how Napier

is here glvmg\\s. ““generalized” picture of a geometric progres-

sion; he iscapplying analysis to the problem and getting away

from ariihﬁqetic with all its lack of generalization. In Figure

61, the-points marked A, B, C, D . . . may represent not only

successive positions of the moving point after equal intervals

) .zs'éf time, but also the positions on a number scale of the terms

o 10,000,000, 9,999 999 and so on of Napier’s geometric progres-

\\3 " sion. The whole Yine A7 represents the first term, 10,000,000,
the length BZ the second term, 9,999,999, and so on.

Napier then drew another line (the lower line in F igure 61)
and imagined a point moving along it without change of veloc-
ity, its velocity throughout being the same as the initial
velotity of the first moving point, :

We may regard the distances marked ABy, BiCy, Gy -
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as equal time-intervals. Napier argued that when the point on
the upper line had reached B, the point on the lower line weuld
have reached a point, By, a little farther from A; than B was
from A. The reason would be that while both points started
with equal velocities, the point on the upper line was con-
tinually decreasing in velocity, while the other point continued (™
with unchanged velocity. Taking AB as the unit in which bath,
lines were to be measured, Napier estimated that AiB: weuld
equal 1'0000001. He therefore gave this “label numb‘e‘r” to
9,999 999 and thus came to associate the length AdBywith the
length BZ, since this represented 6,099,999, <o\

Instead of using an expression like “label nbmbers,”’ Napier
first called the numbers represented by aiﬁ,fA;Cl, AD, . ..
‘artificial numbers.” Later, howevergfie invented the word
“logarithms,” using two Greek wordgywhich we have already
frequently met in other conngdtions, the words arithmos,
“number” and logos, “ratio.’’ It is impossible to say exactly
what he had in mind when'siaking up this word. Seven years
after his death, his fri ddvand co-worker Henry Briggs said,
“They seem to hayeBeen called logarithms . . . because they
exhibit to us numbess which always preserve the same 1atio to
one another.” /5

In Napier(s ofiginal plan, the line AZ, which represented the
sinus fotusfor radius of 10,000,000 units, was arbitrarily given
ZeYo %sﬁrs'logarithm. Napier regarded 10,000,000 units as the
distance of the moving point from Z after the expiration of no

period of time. As he puts it “By the definition of distance
N\ nothing will be the logarithm of radius.” By similar reasoning,
he concluded that the length represented by AiB: was the
logarithm of the length represented by BZ; that A,Cy was the
logarithm of CZ; that A.I'y was the logarithm of FZ, and so on,
the smaller the number, the larger its logarithm. Later on,
when he saw that he had hit on a concept that could be applied
to numbers generally, and not merely to values of sines, he de-
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cided that for numbers greater than 10,000,000 the line AZ
would have to be extended backwards and the moving point
regarded as moving to the left. The logarithm of such & number
was regarded by him as “defective,” this heing his word for the
modern term “negative.” He says, “Therciore we call the
Logarithmes of the sincs Abounding [positive] becatse they
are always greater than nothing and set this matke’st before’
them, or else none. But the logarithmes whicK.are lesse than
nothing we call Defective or wanting, sciting this marke -
before them.” (Descriptio, Wright's tra.%ki’tion.) We shall see
how this concept was reversed whenah improved type (the
modern “common’’ logarithm) wasDwought forward by Napier
and Briggs. Nowadays, the log't’rit\hm of any number greater -
than 1 is positive, that of any number less than 1 negative. :

In order to find a method”within the bounds of practical -
possibility whereby to gileulate his logarithmic table, Napier
made use of Proportigit Without giving a rigorous proof, k¢

showed that if g\: g thenlogh — loga = logd — logc. This _-:;

Propositiony Which applies to modern logarithms as well as to
those invented by Napier, is stated by him in the words, “The
10gapipb;i11§ of similarly proportioned sines are equidifferent.
Thisnecessarily follows from the definitions of a logarithm ?-ﬂd
\ohf:t]ie two motions. For since by these definitions arithmetical .
(iderease always-the-same corresponds to geometrical decrease
" similarly proportional, of necessity we conclude that equ- -
d.istant logarithms . . . correspond to similarly pmportion'ed
sines.” This statement is of great importance; it enabled Napief
t? select whatever logarithms were necessary for his table of
sines and it—and other Propositions developed from jt—had to
be applied before hig logarithms could be used. ] -
In the first (1614) edition of the Descriptio, the logarithm®
are given as Seven-figure numbers, Later cditions gave them ¥
one figure less, Probably because 1 small error in the early st3€¢



THE INVENTION OF LOGARITHMS 185

of Napier’s work, by accumulation, produced errors in the last
figure of his final logarithms. Here is a copy ofjthe top and bot-
tom lines of a page in the 1616 edition:

Deg 30

;
+1-
m | Sine {Logarthi Difi |Logarth | Sine N

0 | 500000 | 693147 | 549306 | 143841 ; 866025 ;:\60

S

[29 Lines, here omitied) R4S

30 | 507538 | 678183 | 529252 | 148930>] 861629 | 30
~\ Deg 59

X 3

Values of the logarithms of functidns of angles from 30°0" to
30°30’ are found by reading down the lefthand column and
then across that line from lef{;’té right. Thus, log sin 30°30" =
678183 those from 59°30{£6'59°60" (that is, 60°) by reading up
the righthand colum;x.q;ﬁd then across from right to left. Thus:
log sin 60° {or 59%60")'= 143841.

Tt will be seen’that these tables provide logarithms for valucs
of other funcfiofis besides sines. Bearing in mind that the sine
of any aeute angle equals the cosine of its complement, it
will b{féé‘n that column 5 not enly gives the logarithms of the
sine€ bf angles in column 7, but also the logarithms of the co-
sinies (as we should now say) of the angles in column 1. Sim-

“\arly, column 3 gives not only the logarithms of the sines of

V angles in column 1, it also gives the logarithms of the cosines
of the angles in column 7.

Many points of interest are suggested by the middle column.

This is a column of “differences” between the numbers in
. sin @,
columns 3 and 5. Since (to use modern terms) tanf = — it
co
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follows that log tan @ = log sin # — log cos 8. So 693147 —
143841 will be “log sin 30° — log cos 30°” and will equal log
tan 30°. On the other hand, 143841 — 693147 will be “log
sin 60° — log cos 60°" and will equal log tan 60°. Now
143841 — 693147 gives a negative answer, but the digits in
that answer are the same as those in the logarithm for tan(30°.
This explains the 4 and — signs in the table. All the ahgles in
column 1 of the table lie between 0° and 45°; the valties of
their tangents are less than the value of the sizgs dotus; their
logarithms (in Napier's system) were conseguently positive,
as indicated by the + sign on column {’s\side of the table.
All the angles in column 7 lie betweenh%5° and 90°; their
tangent values are greater than thg.t\bf‘ the sinus tolus; their
logarithms, consequently, in Napier’s system, were negative,
as is indicated by the — sign on)column 7’s side of the table.
Modern logarithmic tablegef functions of angles could still
be drawn up in this fashign, but with — |+ instead of -|—.
It has been found, however, that it is easier to change negative
logarithms of functi6uts of angles into positive numbers. This is
done by addinéi?;’temporariiy, to the negative logarithm. For
example, using modern logarithms to base 10, a modern table
gives oM

\.“~ log tan 60° = - 23856

log tan 30° = 976144
IQ&Smg these modern tables it has to be understood that 10
+his been added in order to get the number +9-76144. Now,

O 976144 — 10 = —-23856, which is the real logarithm of tan

30° in our present system. It will be seen that the digits in this

number are the same as those in the logaritbm of tan 60°.

So both “log tan 30°” and “log tan 60°” might both be indi-
~+

cated by printing the single entry :23856. Since, however, it s

easier to work with positive logarithms, an extra column is

now added so that only positive numbers appear in them.
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Napier's tables occupied 90 pages of the little book in which
he—almost timidly—submitted the results of twenty years’
work to the judgment of other mathematicians. He told them
that if they found his idea to be of value he would explain how
he worked out the tables; he knew there must be defects and
errors in his work. “Nothing,” he said, “is perfect at birth:2%
He was not kept long in suspense regarding the reception‘his
work was to receive: it met with instant and admiring ap-
preciation. An eminent mathematician of Cambridgé Univer-
sity, Edward Wright, and 2 still more famous professor of
mathematics at Gresham College, Londong-Henry Briggs,
were especially interested. Wright had writtén'several works on
navigation and he at once saw the value oPlogarithms in navi-
gational calculations. Te lost no time,in translating Napier’s
Descriptio into English. Before publithing the translation, he
submitted it to Napier for his apptoval. When the translation
was published, it contained.a wote written by Napier himself:
“But now some of our €otntreymen in this Island well af-
fected to these studiesiand the more publique good, procured
a most learned Mafliematician to translate the same into our
vulgar English‘t}t}gue, who after he had finished it, sent the
Coppy of it fome, to bee seene and considered on by myselfe. I
having mest willingly and gladly done the same, finde it to
hee most exact and precisely conformable to my minde and
the;%&i’g’inall.” Edward Wright died in 1615 and his trans-
1g.ﬁpn of Napier’s book was published by his son, Samuel

~(Wright, in 1618.

' On March 10, 1615, Henry Briggs wrote to a friend that
Napier “hath set my head and hands a work with his new and
admirable logarithms. I hope to see him this summer, if it
please God, for I never saw book that pleased me better, or
made me more wonder.”” He adds that he was “wholly taken
up and employed about the noble invention of logarithms
lately discovered.” That summer be spent a month withl
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Napier at Merchiston Castle, which Napier had inherited from
his father. In 1624, seven years after Napier's death, Briggs
published logarithmic tables under the title Arithmetica Log-
arithmica. In the preface, he mentions some important con-
versations that took place between him and Napier on the oc-
casion of this visit. These conversations brought forth our
modern logarithms. Having laboriously achieved his{original
object, Napier saw that certain changes in the strueftire he had
erected would result in great simplifications apdiadvantages.
Regarding that twenty-year-old structure \.rn@ierely as a ten-
porary scaffolding, Napier and Briggs ptoceeded to erect a
new structure. When the new structuréswas completed, the
scaffolding, without which it could nof‘ilave been erected, was
abandoned and today is merely ¢fgreat historic interest.

The possibility of changes, in'his original ideas had been
foreshadowed by Napier in the' Descriptio. There he states that
the choice of zero as the, loganthm of the sinus totus, or radius,
was purely arbitrary, “¥t was indeed left at libertie in the be-
ginning, to attribufe nothing, or 0, to any sine or quantitie
[for its logarithia}?” (Wright's translation.) Briggs, explaining
that the logaxithms in his Arithmetica Logarithmica are differ-
ent from ¢hdse in the Descriptio, says, “I myself, when ex-
poundeg [Na,plcr s original logarithms] in London to my

l%eﬁa!‘s in Gresham College, remarked that it would be much
piore convenient that 0 should be kept for the logarithm of the
Q Whole sine, but that the logarithm of the tenth part of the same

~\\ whole sine . . . should be 10,000,000,000 [that is, 1 followed by

as many zeros as were desired: 7 for 7-figure tables, 10 for 10-
figure tables, and so on]. And concerning that matter I wrote
immediately to the author himself; and as soon as the season
of the year and the vacation of my public duties of instruction
permitted I journeyed to Edinburgh, where, being most
hospitably received by him, I lingered for a whole month. But
as we talked over the change in the logarithms he said that he
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had for some time been of the same opinion and had wished to
accomplish it; he had however published those he had already
prepared until he could construct more convenient ones if his
affairs and his health would admit of it. Buf ke was of opinion
that the change showld be effected in this manner, that 0 should be
the logarithm of wnity ond 10,000,000,000 that of the whole sing; « O\
which T cotild not but admit was most convenient by far. Soa,
rejecting those [tables] I had previously prepared, 1 began.at™"’
his exhortation to meditate seriously about the calculationof
those logarithms.” In his Arithmetica Logaritimica, published,
as has been said, seven years after Napier's death,,Bﬁggs gave
tables in which zero was taken as the Jogarithi of'1, while he
fixed the logarithm, not of the whole singpbut of 10, as the
basis of the system, choosing 1 (follovge&by fourteen zeros)
as its logarithm: The addition of all 1Hed€ zeros was simply to
enable him to express the logarithals; with great accuracy, in
whole numbers. These changes.had been suggested by Napier
in an Appendix to the Constrgetio headed: “On the Construc-
tion of another and bettet kind of Logarithms, namely one in
which the Logarithm.df whity is 0.” Napier continues, “Among
the various imprevenients of Logarithms the more important
is that which adopts a cypher as the Logarithm of unity, and
10,000,000,000:45 the Logarithm of either one-tenth of unity
or ten timiss\inity.” They had also been more vaguely hinted
at in i‘kﬂ ‘Admonition” printed in Wright's translation of the
Despﬁ'ptio in which Napier says, “But because the addition
~aind subtraction of these former numbers may seeme somewhat
N\ painfull, T intend (f it shall please God) in a second Edition
to set out such Logarithmesas shal make those numbers aboue
written to fall upon decimal numbers such as 100,000,000;
200,000,000; 300,000,000, ete.”
In this way, a system of logarithms to base 10 was de-
veloped, the system today known as Common Logarithms, 1o
distinguish them from Naoperian Logarithms o1 Natural Log-
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arithms, which are not the same as those first proposed by
Napier, despite their title.

In 1617 Briggs published a pamphlet containing the log-
arithms to base 10 of the first thousand numbers. In 1620 Ed-
mund Gunter, Professor of Astronomy at Gresham College,
London, published the first table of logarithmic sines ta‘base
10. Then in 1624 appeared Briggs’ Arithmetica Laogarithmica
giving the logarithms of numbers from 1 to 20,000 and from
90,000 to 100,000. Four years later, a Dutch¢inathematician,
Adrian Vlacq, published at Gouda, in Helland a table that
completed the gap left in Briggs' work{between 20,000 and
90,000. Since he had to calculate 70,080 logarithms and only
made use of 30,000 calculated b ‘B\riggs, Vlacq would have
been justified in calling this a néw work. Instead, he modestly
described it as a second editlon of Briggs’ Arithmetica Log-
arithmica. Briggs himself :h’éd been busily filling in the gap in
his tables. He wrote to.@ friend, “My desire was to have those
chiliades [thousands| that are wantinge betwixt 20 and 90
calculated and printed, and I had done them all almost by my
selfe, and by ainé frendes whom my rules had sufficiently in-
formed, andby agreement the busines was conveniently parted
amongstQis; but I am eased of that charge and care by one
AdriagmnVlacque, an Hollander, who hathe done all the whole
lﬁ{di‘ed chiliades and printed them in Latin, Dutche, and
&renche, 1000 bookes in these 3 languages, and hathe sould

X “them almost all.” Until some sixty years ago, the hundreds of

tables of logarithms that had appeared were all based on the
work done by Briggs and Vlacq in the thirteen years between
1615 and 1628. In addition to giving the logarithms of numbers
from 1 to 100,000, Vlacq gave a table of logarithms of “Sinus”
(sine}, “Sin.Compl.” (cosine), “Tang.” (tangent), “Tang.
Compl.” (cotangent), “Secan.” (secant), and “Sec.Compl.”
(cosecant), calculated to 10 figures and based on the values of

these trigonometric functions given in the tables drawn up by
Rheticus,
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We have mentioned the logarithmic table drawn up by Ed-
mund Gunter. He was also responsible for the idea that led to
the modern slide rule, He drew a number of lines whose lengths
were proportional to the logaritbms of vatious numbers. By
measuring various such lengths on a pair of compasses he was
able to work multiplications and divisions. Figure 62 shows \
nine lines. The line at the top represents 1 unit and so mayhbe
regarded as representing log 10 and as being a yardstiek by
which other logarithms may be here represented. \ by
. fog 10 (1 unit) S
log 9 {954 unit) \ ’ N
log 8 {903 unit) INY L
log 7 (-845 unit} N
fog 6 (-778 unit) L\
log 5 (-699 unit) A\
log 4 (+602 unit)
log 3 (-477 unit) .
U log 2 (30Runity N\

L o

k 4

Y

Fi. 62

Fromul\o:g‘e‘:r'ithmic tables we know that log 9 = 954, so the
Semnj{\iine has been made 954 units long, and therefore repre-
senté\Jog 9. Similarly, the other lines represent log &, log 7,
Jog'6, log 5, log 4, log 3, and log 2. The logarithm of 1 now being
\Zéro, can have no length assigned to it.

To multiply 4 by 2, place the lengths representing their l?g-
arithms end to end. The resulting length will be -903 units,
which represents log 8. By drawing a larger number of hnfzs,
the possibility of multiplication by this method will be in-
definitely increased.

In 1636, a well-known mathematician, the Reverend Wil-

' liam Oughtred (who expired at the age 86 in a transport of
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joy on hearing that the House of Commons had voted for the
return of Charles IT and an end of Puritan rule) placed two of
Gunter’s scales side by side so that one of them could slide
along the other, This is the principle of the modern slide rule,
another debt we owe to Napier.

At the same time that Napier was working out his invenfion,
a Swiss watchmaker, Jobst Biirgi, was working on a gﬁnilar
project, bui by an entirely different line of approdeh=~While
Napier’s reasoning was geometric, Biirgi’s wag\algebraic. It
was definitely based on the structure of a ggcimé’tric progres-
sion. S

As we have noted, Archimedes had besn interested in the
geometric progression O

1,2, 4,8, 16,3864 . . .

For centuries this series has fopmed the basis of innumerable
popular problems, the answers'to which still surprise most of
us. There is the story offthe Fastern king (whether Hindy,
Persian or Arab is immaterial) who promised to reward the
inventor of the gameof chess in any way he wished. The in-
ventor thereypoitook a chessboard and pointing to its 64
squares made\bﬁe apparently modest request for one grain of
wheat forthe first square, two grains for the next, four grains
for the ©igst, and so on. The really industrious reader will now
take-péncil and paper and discover whether, if 20,000,000
p&tﬁds of this wheat were loaded into each of 131,762,457

_uships, (allowing 7,000 grains to 1 pound), 93,709,551,615
(. grains would still remain to be handled.

A similar type of problem concerns the blacksmith who
charged a penny for the first nail in a horseshoe, two pence for
the next, four pence for the third nail, and so on for twenty-
four nails. A modern version is that of the applicant for a job
who suggests a salary of 1 cent for the first day, 2 cents for the
next, 4 cents for the third, and so on, generously agreeing to
start again from scratch at the commencement of each month.
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It was not, however, this type of problem that interested
Archimedes and later mathematicians in this geometric pro-
gression. As we have seen, they were interested in trying to
discover the connection that existed between it and the arith-
metic progression 0, 1,2,3,4,5. . .

Here was a real problem, whose solution was eventually te ™
lead to the discovery of the laws concerning exponents, €on-
cepts which were to lead to great simplification and extension
of algebraic ideas. Early in the sixteenth century it ‘had been
realized that addition of any two termsin the above arithmetic
progression had some cennection with mulgiplication of the
correspondingly placed terms in the geoimbttic progression.
Nowadays, as we have seen, we have onlyto write the series

- 20, 21, 22, 2%, 24,288
to see at a glance the connection(between them, but in 1600
this symbolism had yet to be déveloped. The idea bebind it,
however, cnabled Jobst Biftgi to produce a table of anti-
logarithms (to base 1-000L) Since, to use our modern base of
10, 102 = 100, 2 is saito be the logarithm of 100 to base 10,
and 100 is said tp b€ the antilogarithm of Z to base 10. In Biirg’s
tables, the logq.r\lﬁ\lms were printed in red, the antilogarithms
in black, so-he’called his tables Die Rothe Zahl. They were
published 11620, but by that time the much simpler log-
arithipg of Napicr and Briggs, based on 10, were already firmly
estabii‘s]ﬁed and accepted by mathematicians everywhere. Al-
ﬂi’éugh in England today tables of antilogarithms (to base 10)
P :}ife in use, they arc unnecessary, since the number correspond-
) ing to any given logarithm can easily be found from modern
tables of logarithms.
The invention of logarithms may be regarded as marking
the end of the renaissance period of mathematical develop-
ment. From this point we shall enter the peried of modern

mathematics.
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| yHEN Napier was a hoy of fourteen, {(safileo Galilei, who
Wwas to become the father of dymamics—the branch of
science that deals with the action gf-forte in producing motion
—was born in Pisa, the Italianoity famous for its leaning
tower. N
For nearly two thousan@j}feaﬁrs, the inadequate and often in-
correct notions of Aristdtle had held undisputed sway in all
branches of sciencesThe solitary intellectual revolt, that of
Aristarchus, whidh)we discussed in Chapter IV, had been
quickly forgo@tﬁn\, and had lain in the faded manuscripts of
Archimedes,‘uliknown and inaccessible fo European students
throughot‘the Middle Ages.
Gg]i\ié}ﬁvas the son of an impoverished Florentine nobleman
whowas himself interested in mathematics, and also in music.
.‘When seventeen years old, Galileo was sent to the University
() of Pisa to study medicine. One day, while attending a service
S\ inthecathedral, his mind wandered from the contemplation of
heaven to that of a great bronze lamp suspended from the
ceiling. He watched its oscillations to and fro, and, using the
beat of his pulse for a time keeper, was surprised to find that
the lamp took as long to make a tiny oscillation as it had taken
to make a great one. [Later, in 1656, Huygens, the great Dutch
scientist, showed that the time required for one complete vi-

194
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bration, or oscillation of a pendulum was always 27 Vé, where

stands for the length of the pendulum in feet, and g stands for
the acceleration due to gravity, about 32 feet per second every
second. Thus, if a pendulum is 2 feet long, it will always take
about 1-37 seconds to go to and fro.} ~
Galileo’s interest in science was aroused by this problem,
and was further stimulated by a chance attendance at al‘éﬁtﬁre
on mathematics, his first encounter with this subject. Se great
was his interest in science that he was led to abandén his medi-
cal studies, and. on leaving the university whe#' twenty-one
years of age, to commence to investigatesthe’subject of dy-
namics. PN .
When twenty-five years old; he was appointed a professor
of mathematics at Pisa, and whil&\helding this appointment,
he made his famous experimentg with falling bodies, using for
this purpose the leaning towet of Pise. Before a crowd of
students, professors andjﬁfiésts he dropped two pieces of
metal, one of them ten/times the weight of the other, from the
top of the tower. They struck the ground at practically the
same moment. Even this did not shake the faith of the other
professors in_the teaching of Aristotle, who had said that a
heavy bodydell faster than a light one. Indeed, whean the
youthfid professor had the temerity to announce that Aristotle
had.‘b@éﬁ wrong, the authorities at Pisa were so horrified at
su®§amilegous insolence they made things so unpleasant for

~Galileo that he was forced to resign his professorship.

He was, however, able to obtain a professorship of mathe-
matics at Padua, where no doubt he was to hear many stories
of famous alumni such as Cardan and Copernicus, who had
studied in his department there. Padua was a city of the Vene-
tian Republic, where freedom of thought was encouraged. So at
Padua Galileo was able to continue his experiments and teach-
ing in a friendly atmosphere. So successful was he that scholars
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from all over Europe—some of them princes—flocked to his
lectures. Eventually, he had to be given a lecture hall that
would accommodate 2000 people. He remained at Padua for
nearly eighteen years, and so highly wete his lectures and his
scientific researches valued that his salary rose from 180 forins
for 1592 to 1000 florins for 1610. \

Archimedes had built up the science of equilibfituh, or
“balance”; it was left to Galileo to lay the foundationsof the
science of motion. Without his work in this field. itis doubtful
whether even Newton would have solved the problem of the
motion of the planets.

Starting with the assumption that ifd body falls freely from-
rest toward the earth, there are equ@l increases in velocity in
equal times (that is, it moves wigh\yiniform acceleration, as we
now should say) he deduced the gxtremely important law that
the distance covered is propardional to the square of the Vime loken.

The automobile has famfliarized the modern world with the
idea of “acceleration;* or increase in velocity during a unit
period of time. It wﬂl therefore be obvious that if ¢ (feet per
second per s cond) represents the uniform acceleration of a
body falling g@m rest, and v (feet per second) its final velocity
after ¢ (segonds), v must equal at.

Now t}ﬁppose another body falls for ¢; seconds and acquires a
final ¥€locity of ; feet per second. Since its acceleration re-
"m\@ihs the same as in the former case, v, must equal a#.
Comparing these two results, we see that the same “a” is

equa.ltoboth and to = So— =2l = t—

£y Boun b

Now suppose that » and ¢ have the same meanings as before,
and that & (feet) represents the distance through which the
body falls freely. The velocity steadily increases from 0O to v,
50, since the acceleration, or increase in velocity, is uniform
throughout the falling movement, the average velocity will be



FORERUNNERS OF NEWTON 197
0+

, or 3v. Since the time occupied is ¢ seconds, the distance

covered will be Zvt. S0
d = 3vi.
This result may be represented (as Galileo represented it)
by the area of a right triangle having its shorter sides rexd
spectively equal to o anits and ¢ units (since the area of a ¥
angle equals ¥ base times height), thus: O

Now compér% the distances d ft. and du ft. covered by two
bodies tl‘(lé,\t “fall from rest. Suppese one of them falls for ?
secopds;-acquiring a final velocity of v it. per sec., and that the
othérfalls for t; seconds, acquiring thereby a final velocity of

~ :iﬁft. per sec. These distances will respectively be represented
by the areas of the triangles shown in Figure 64.

By Euclid’s geometry we know that the areas of similar tri-
angles bear the same proportion to each other as do the squares
of their bases. So, from Figure 64,

éd P

di ti
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Here we have a geometric proof of the law discovered by
‘Galileo.

Y P, 64

By observing phtg\times of descent of bodics rolling down in-
clined planes, Galileo fllustrated the truth of this law. Shortly
before he diedrhe was able to prove that the velocity acquired
by a bodyin descending a long inclined plane was the same as
that acqiiired in desceriding a short one of equal height.

In.1607, or thereabouts, a young apprentice to a spectacle
Jnaker, named Hans Lippershay, of Middleburg, Holland, was
¢~ playing with his master’s spectacle lenses. He found that by
)" holding two of them in a certain position, objects became en-

larged. He pointed this out to his master, who placed two
lenses in a tube and displayed it as a toy in his shop window.
Here it was seen by a government official, who bought it and
gave it to Prince Maurice of Nassau, the stadtholder of Hol-
land, who saw the possibilities of the “toy” as a spy-glass for
military use. By 1609, news of this invention reached Galileo,
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who soon made a spy-glass that greatly surpassed the one made
by Lippershay. He was summoned to Venice to demonstrate
his instrument, and many of the Venetian senators, though of
an advanced age, climbed to the top of the highest church
tower in Venice and were able to see the sails of an approaching
ship two hours before they were visible to the naked eye. The
Doge of Venice saw the immense possibilities of the instrug,
ment in naval and military operations, and was delighted when'
Galileo presented his model to him. It was on this or;ca.smn
that his salary was raised to 1000 florins a year. Gahleo then
made four other telescopes, as his mstruments’u{ere named
(from the Greek fele, “far,” skopos, “watcher”)esch of them
more powerful than the last. With the fifthy which made ob-
jects appear more than thirty times as larg&as they were when
viewed by the naked eye, he noticed tHaton January 7, 1610,

there were two small stars to the easf: of the planet Jupiter and
one to the west. The next nightpéo his amazement, all three
were to the west of the planéth Three nights later he found
- there was another small stix revolving around Jupiter. Here
he had discovered a stnk\lg confirmation of the Copernican
theory that the pian%tﬁ themselves revolved around the sun.

Once more he arofised the frenzied opposition of Churchmen
who preferred #hie’teaching of Aristotle, which considered the
earth—and. ‘¢onsequently man—the center of the universe.

One of \em even declared that Galileo had put these four new
satellifes (revolving around Jupiter) in his telescope! How-
ever\the Grand Duke of Tuscany was delighted when Galileo
Qalned these four satellites “the Medicean stars” after the
family name of the ruler of Tuscany, and offered him the
well-paid sinecure of being the Duke’s official “Philosopher
and Mathematician.” Soon afterwards, Galileo accepted the
offer {(which included the title “First Mathematician to the
University of Pisa” though na duties at Pisa were involved)
and was unwise enough to leave the freedom-loving atmos-



m\J

\

200 MAKERS OF MATHEMATICS

phere of Venetia, whose rulers were jealous of the power of the
Pope, and return to Tuscany, where he should have known his
unorthodox views would receive bitter opposition. At Florence,
by the aid of his telescope, he made further discoveries that
confirmed the truth of the Copernican system, and he also
discovered the existence of sun-spots—another cause ol deep
offense to the followers of Aristotle, who accepted hiswiew that
the sun was without spot or blemish. Despite theviolent up-
roar of the more ignorant churchmen, certaifi“ecclesiastics of
that day, such as the Pope himself and £ardinal Barberini,
who later became Pope, did not oppose his views. Cardinal
Barberini actually confirmed Galileo’s discoveries by looking
at the stars through his telescope. Wevertheless, the forces of
reaction gained the upper haiid) and Copernicus’ book was
placed on the Index of prolﬁbi’ced books (where it remained
for two hundred years). @alileo was advised to cease support-
ing the system proposéd by Copernicus, but nevertheless in
1630 he published g bock which indirectly supported that sys-
tem. By that timé€ his friend Barberini had become Pope under
the title of {{fbén VIII, but he now listened to the reac-
tionaries who"suggested that a character in Galileo’s book
called §imp1ido (“the simpleton”} represented him, as the
supporter of the system of Ptolemy, which was based on that
of Afistotle. The sale of the book was prohibited, and a com-

(mussion was appointed, which reported unfavorably on Galileo.
45 The report condemned him for “maintaining that the earth .

moves and that the sun is stationary.” Soon Galileo was sum-
moned to appear before the Inquisition. On Junc 22, 1633,
Galileo was forced, under threat of torture, to declare, “I
abjure, curse, and detest the said errors and heresies and gen-
erally every error and sect contrary to the said Holy Church;
and I swear that I will nevermore in future say or assert any-
thing verbally or in writing which may give rise to a similar
suspicion of me; but that if T know any heretic, or any one
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suspected of heresy, I will denounce him to this Holy Office
or to the Inquisitor and Ordinary [bishop] of the place in
which I may be.”

It is easy to condemn Galileo—as many of his biographers
have condemned him—for lacking the courage to face martyr-
dom, but only those who in similar circumstances have dis-

played that courage have the right to criticize the old man who
thus perjured his conscience. His life was now broken, and a,!‘-'\ ’

though ke still continued to do scientific work {on which mueh
of Newton’s work on the laws of motion was to be based) he
became blind and died in January, 1642, stilt undet the out-
rageous supervision of the Inquisition, and to all intents and
purposes a prisoner in his own home. Y

Apart from his actual discoveries in cérimection with as-
tronomy and dynamics, Galileo’s workJaid the foundations of
the modern scientific method which regards the collection of
experimental evidence as the essential prelude to the formula-
tion of scientific laws and theoties.

Strange to say, Galileo jgnored three great laws concerning
the movements of the plangts that were empirically discovered
by his great contemporary Johann Kepler, and which form
one of the landmarks in the story of matbematical science.
They were to provide Newton with the basis of much of his
work on univérsal gravitation.

JOhan@@ler, whose “laws” have placed him among the
foremast-astronomers of all time, was born in 1571 at Weil der
Stadt ‘hear Stuttgart. His father was the drunken son of a
Sotmer burgomaster of the town who, having run through the
fortune left him by his father, became 2 mercenary soldier.
His mother was unable to read or write, and was suspected of
dabbling in witcheraft. When his father returned to civil life
he opened an inn, and presumably made a little money, for he
saw to it that Johann received a sufficiently good education to
enable Lkim to enter the school maintained by the Duke of

Q!



202 MAXERS OF MATHEMATICS

Wiirtemberg for promising boys. From this school he passed
on to the University of Tiibingen, his original intention being
to become a minister of the Lutheran Church. He became
interested in astronomy, however, and strongly supported the
Copernican theory. In 1594 he was appointed to a lectureship
at the University of Gritz, in Austria. There he had thé'mis-
fortune to meet a moderately wealthy widow, andathe still
greater misfortune to marry her, since the marriagéproved to
be a constant source of unhappiness. Another misfortune fell
on him when Gritz fell under Catholic confro} and Kepler,
being a Protestant, was expelled from thé tmiversity. In the
long run, this misfortune bore rich\stientific fruit, for it
brought Kepler into association with Tycho Brahe, and this
association in turn was to give hitp*access to the tremendous
collection of astronomical data’ brought together by the
Danish-Swedish astronomeg), +

Tycho Brahe was borain Sweden some twenty years after
that country had finadly secured its independence from Der-
mark. He was a member of a wealthy, aristocratic family that
had branches igboth Sweden and Denmark. An eclipse of the
sun in 1560 Jed him to study astronomy at the University of
Copenhagep., and later at the University of Rostock, the Baltic
town thathad once been a prosperous member of the Hanseatic
Leggué. While there he quarreled with a Danish nobleman,

ught a duel, and had the misfortune to lose part of his nose,

. ~,j'ﬂ:e missing portion being replaced by a piece of material com-
3" posed of wax, gold and silver. Some time later he incurred the

violent opposition of his aristocratic family by marrying a
peasant girl, an action he apparently never had reason to re-
gret,

In 1576, Frederick 1T, King of Denmark and Norway, gave
him the island of Hveen, in the Sound that separates Sweden
and Denmark. Here he erected an observatory, by the aid of
considerable financial assistance from Frederick 11, which was
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given the name of Uraniburg—“the Castle of the Heavens.”
Tycho Brahe remained at Uraniburg for more than twenty
years and made the greatest and most accurate collection of
astronomical data that existed before the invention of the tele-
scope. When James VI of Scotland—‘the wisest fool in Chris-
tendom,” who later became JamesIof England—went to Den-
mark to marry the Danish Princess Anne, he visited Brahe at™),
Uraniburg and wrote some verses in praise of the astronorger.’

After the death of Frederick II, Denmark withheld financial
assistance from Brahe, so the astronomer, always & man of
violent temper, went to live in Germany. Here he received an
invitation from the Emperor Rudoliph IT to beeome his “Im-
perial Mathematician” at the castle of Bepaﬁty, near Prague,
with a salary of 3000 crowns a yeamy Brahe’s removal to
Benatky coincided with Kepler’s remayal from the University
of Gritz. Wanting an assistant, Brahe approached Kepler,
and the latter accepted the invitation and went to live at
Prague, where Brahe had 'gor‘lé:' to live at the request of the
Emperor. The next yea;-<1601—~Brahc unexpectedly died at
the age of 55 and on is‘death-bed asked Kepler to finish some
tables on planetary, m\rjons on which he had been engaged for
some time. In this way the finest collection of astronomical ob-
servations cyel yiade up to that time passed into the keeping
of Johann/Kepler, who shortly succeeded Brahe as the Em-
peror Rudolph’s astronomer.. His royal master had an un-
fortunate habit of omitting to pay him his salary; so he was
'i&rj::e\d'to earn money by casting horoscopes—a perfectly re-
spéctable undertaking in his day. More domestic troubles
crowded in on him: his favorite child died of small pox: his
wife became insane and died; he had to.spend many months in
defending his mother against a charge of witchcraft; the arrears
of his salary accumulated more and more.

Despite all these distressing events, Kepler concentrated
his mind on the task of finding the laws that lay behind
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planetary motion, basing his work on the mass of observations
taken by Tycho Brahe. After eight years of work he was able
to publish 2 book on the motions of the planet Mars. For years,
misled by the opinion of Copernicus, who had believed that
each planet moved around the sun in a circle, Kepler had strug-
gled in vain to account for the irregular movements of this
planet, as recorded by Brahe’s observations. At lagt) after
making tremendous computations, he found that{the move-
ments of Mars could only be accounted for if it:‘;»érliit were an’
ellipse which had the sun at one of its foct.* Repler’s first law
dealt with this elliptical movement of plaxets.

By studying the great mass of observations at his disposal

 he concluded that, contraty to all bélief, the planet Mars did

not move with uniform, unchangig® speed. He found, however,
that if an imaginary line were'dtawn from the planet to the
sun, this line would sweep tlifsugh equal areas in equal times,
no matter what might be-tHe position of Mars on its elliptical
orbit when the observations commenced. From this, it follows
that Mars moves fastest when nearest the sun, slowest when
furthest away, from the sun. After reaching similar conclusions
regarding thg}r it and movement of the earth, he extended
them by amalogy to the other planets. These two laws were
publishédbin 1609 in the book already mentioned, entitled
De mgt}bus stellae Martis, *Concerning the movements of the
sj:&s Mars.” In this same book he touched on the subject of

’,j:gravity and suggested that the “pull” of the moon was re-
» sponsible for tides on the earth.

Ten years later, he published a book called Harmonices

_ ™ An ellipse is traced out when a point moves in such a way that the sum of
its distances from two fixed points is constant. Each of these fixed points is
called a Jocus of the ellipse. Those who are not mathematically-minded can
casily grasp the meaning of this statement if they will mark two points, F and
¥1 on a plece of paper, then fasten the ends of a piece of tape that is longer than
FF\ by thumb-tacks at these points. If the tape is now stretched taut with a
pencil point and the latter is allowed to trace out a curve, this curve will be an
ellipse whose foci will be the points F and F, '
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Mundsi, in which he attempted to establish a theory that the
planets, as they rushed through the heavens with varying
speeds, set up a celestial harmony which was audible to the
“sentient soul” behind the universe. In the midst of these
flights of fancy Kepler laid down his third and greatest law,
that the square of the time of one complete revolution of any
planet is proportional to the cube of its mean distance from the
sun. We can picture the joy and satisfaction Kepler must.};tg.i‘/e\
felt when, after having pored over his vast accumulation’ of
measurements, and having vainly tried in countless' Wways to
find some numerical connection between the distances of
planets from the sun and their times of revolutioa around the
sun, he suddenly discovered that the ratio, tween the second
power of the time and the third power of the distance was al-
ways the same. If we make use of modern figures and express
the distance from the sun in astrongmical units (an astronomi-
cal unit, A.U., is the average distance of the earth from the
sun) we get the following rfzslglié:

R’Isﬁe’ in | Distance

years (T) (D) T? D?
Mercury 50 | 24 | -38TAU.| 03| 0S8
Venus\:"\." 61 723 AU, -378 -378
Eartf\" 100 | 100 AU.| 100 1:00
Mars 188 | 1'524AU. | 354 354

~Jupiter 1186 | 5202 AU. | 1407 | 1408
Saturn 2946 | 9-539AU. | 8679 | 8680

Although Kepler’s work lay almost exclusively in the realm
of mathematical astronomy, he made imporiant contributions
to pure mathematics. He was largely responsible for the intro-
duction of logarithms in Germany, while he was the first of the
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seventeenth-century mathematicians. to make use of methods
that involved the idea of “infinity” that had been banished
from mathematics ever since the time of Zeno. In 1613 the
vintage was especially good, and Kepler was led to consider
the best method for gauging the contents of a wine cask. Bas-
ing his method on the work of Archimedes, he took a shortcut
by making use of what subsequently became known .as™*in-
finitesimals” (which we shall consider shortly). Although his
methods aroused much adverse criticism, since they employed |
illogical statements regarding “Infinitesimals,’ tHey achieved
the required results and prepared the way fob'the method of
indivisibles, which we shall meet when \we come to discuss
Cavalieri, and for the calculus of Newtgn and Leibniz.

Despite the worldly misfortunes \Ehatg dogged his footsteps,
Kepler remarried in 1612, and apparently found real happiriess
this time, bt

His books show a stranggiblend of mystical speculation, of a
highly fanciful nature, cotithined with a sure grasp of scientific
truth. His three great laws reduced the solar system to sim-
plicity: they showed that the sun was situated at the common
focus of the elliptical orbits of all the planets, and they en-
abled astrogemers to calculate the exact position which any
planet wolld occupy at any given moment. Kepler died in
1630, when 59 years old, while on a journey undertaken to try
to.obtain some of the arrcars of salary due to him.
z;ih“e story of Napier, Galileo and Kepler has taken us into

\.fthe seventeenth century. That centudy was ‘to, see tremendous,
~ and brilliant achievements in mathematics in many countries

of Europe.

In 1596, the year when Napier started out on his twenty-
year search that was to lead to suchfsprpfismg_simpiiﬁcations
in computation, a boy was born negr Tours, in France, who
Wwas to revolutionize mathematical, concepts, and usher in
modern mathematics. René Descartes, like Napier, was the
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sonofa Wealthy landowner. He was sent at theageof eight toa
Jesuit bearding school, where, on account of ill-health-—or
maybe by virtue of possessing an influential father—he was
allowed to lie in bed as late cagh morning as he pleased, a habit
he retained all his comparativgly short life of fifty-four years.

Despite being an apt pupil, Be later declared that his studies
had done nothing for him but 'to give him a conviction of his
complete ignorance. In this he was like the great Isaac Newton, A
who declared, toward the end of his brilliant life, that h&had
always felt like a boy playlng by the seashore, while tﬁe \great
ocean of truth lay all undiscovered before him. (¢

Descartes could find no mental satisfaction in#ny of the pre-
vailing systems of pmlosophy taught him By the Jesuits.
“And this is why,”” he says, “‘as soon as my age permitted me
to quit my pieceptors, resolving to seek o other science but
that which I could find in mysklf or, elsedn the great book of the
world, 1 employed the remamder of my youth in travel, in
seeing courts and camps, in frequentmg people of diverse
humors and conditions.” Ia these words Descartes gives us the
key to his strange, unsettled life of Intermittent intercourse
with others and pen«({dg oi solitude. This little man with a large
head, promment mose and projecting forehead over which
thick black hajt’fcll almost to his cyebrows, and who nearly
always dressethin somber black, had a cold and selfish disposi-
tion. He\ eyer married, though he had an illegitimate daughter
who died in infancy. His main object in life was to establish a
new $chool of phitosophy; his great mathematical invention
< fmly saw the light of day incidentally, as an appendix to a
Work on philesophy. For a.‘ime, his philosophical followers,
the “Cartesians,” as they were called, flourished in certain
European countries, despite bitter opposition. Their tenets
have long since been abardoned; the mathematical matter
that was relegated to an appendix has won undying fame for
its author,
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On leaving school, Descartes followed the usual procedure
for a young man of wealth in thé France where Cardinal
Richelieu was rising to power under the youthful Louis XIII.
He joined in the trivialities of the world of fashion in Paris and
later entered the army, in the service of Prince Maurice of
Orange, in Holland. While in Paris, however, he came in cons,
tact with 2 French mathematician, Claude Mydorge, who
aroused his interest in mathematics. It has been suggested
that Descartes joined the army in order to break away from
the distractions of fashionable Paris, but it was{the normal
thing in his day for the son of a wealthy man to&rter either the
army or the church., =~ \®)

Descartes” arrival in Holland coincided)with a lull in the
fighting there, and he made use of tiietleisure time thus af-
forded him by applying himself to)the study of mathematics.
After spending two years in Holland without seeing any fight-
ing, he joined the Bavarian atmy that was then taking part
in the disastrous Thirty Y¥eats’ War that was soon to sweep
like a tempest through.Germany. He teils us that during this
campaign, in the winkgr of 1619, while in winter quarters on the
Danube, he “wag%ilted with enthusiasm and discovered the
foundations of @unarvellous science.” These words are usually
supposed tg efer to his discovery of analytic geometry, but
they mayrefer to the general philosophical methods he was
later.t¢ &mploy.

Descartes took part in the battle of Prague in September,

1620, while Briggs in England was busy preparing tables of
“\Nogarithms for his Arithmetica Logarithmica, and the following

>

year he saw service in Hungary. This was the end of his soldier-
ing, for he took to traveling widely through Europe. The death
of his mother gave him an independent income which enabled
him to follow his own inclinations. He settled in Paris, where
he became interested in the theory of the refraction of light
and in the grinding of lenses for optical instruments. Scientists




FORERUNNERS OF NEWTON 209

everywhere were at this time excited by the new instrument
called a telescope that was laying the foundations of modern
asfronomy. .

Before long, Descartes found the visits of his fashionable
friends more than he could bear; they distracted his medita-
tions—one of them actually disturbed him in bed as early as

eleven in the morning! Disgusted at such intolerable interrup-\
tions in a student’s lifc he eventually left Paris and settledin

Holland in order to be able to spend his days in meditation and
the search for truth. For the next twenty years he moyed from
place to place in Holland, changing his home no-fewer than
twenty-four times. At last, he was free from urtruders. I
sleep ten hours every night,” he wrote from Amsterdam, “and
no care eyer shortens my slumber.” Hepe be studied physics,
mathematics and music, in which hew4s deeply interested.
He was never a strenuous workereiHe himself wrote, “The
principle which 1 have always.gbserved in my studies, and
which I believe has helped me'fhost to gain what knowledge 1
have, has been never togpend beyond a few hours daily in
thoughts which occupy{he imagination, and a very few hours
yearly in those whjchsgccupy the understanding, and to give
myself all the resbdf my time to the relaxation of the senses
and the repose'of the mind.” Descartes’ background may be
unusual an&}ibt particularly attractive; his genius, on the
other h\ah&; places him among the greatest mathematicians of
all time
\Ip\ 1637 he published a book outlining his views on phi-
Nosophy and entitled A Discourse on the Method of rightly con-
trolling the Reason and seeking Trulh in the Sciences. He had
been working on it intermittently for eighteen years. There
were three appendices to the book, the third being on ge-
ometry. This third appendix is the one on which Descartes’
fame rests. It first deals with problems that can be solved by
constructions which employ only ruler and compasses, and

Q"
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then passes on to consider various types of curves. Euclidean
geometry, which Descartes had studied as a young man, con-
sists of a large number of separate theorems, each of which,
to all outward appearance, stands alone. Descagdes perceived
that certain general truths lay behind geometric figures. “But
it did not seemi to me,” he said “that they told my mind ‘Wit
sufficient clearness why the things werc as I was shown &nd by
what means their discovery was attained.” O

Descartes’ genius showed itself in the method, he found
whereby any curve may be represented by means of some re-
lationship or other that can be shown to@xist between the
lengths of two straight lines, “than which\F could find no ob-
jects more simple or capable of beipgwiore distinctly repre-
senited to my imagination and sepses,” as he puts it.

The lengths of these two strdight lines are known as co-
ordinates, though Descartes ditnot use this term, its invention
being due to Leibniz, whomiwe shall meet later. In Figure 65,
in addition to a given cure, two straight lines called axes of co-
ordinates have been didwn at right angles to each other. These
axes are usualty dfawn in this way, but this is not an essential
Tequisite. \ N

To illustrate’the meaning of “cosrdinates,” four points, A,
B,Cand J?)lave been taken on the curve. They lie respectively
in Wha(’a\e known as the Ist., 2nd., 3rd., and 4th. quadrants, or
“cg{&rtérs” made by the two axes.
+\The codrdinates of A are the distances YA (or OX) and XA

Olor OY). Each of these is positive, since measurements to the
\J right of the vertical axis, and measurements upward from the
horizontal axis are considered positive.

The codrdinates of B are the distances Y,B (or OX,) and
XiB {or OY,). The first of these is negative, since measure-
ments to the left of the vertical axis are negative; the second,
being measured upward from the horizontal axis, is pesitive.

The codrdinates of C are the distances Y;C (or OXs) and
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X,C (or OV,). Each is negative, measurements downward
from the horizontal axis being negative, as well as distances to
the left of the vertical axis.

The codrdinates of D are the distances YsD (or OX3) and
X;D {or OY3). It will be seen that the first of these is positive,
the second negative.
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\M\’F ifty-five years after the Discourse was published, Leibniz
called a measurement to the right or left of the vertical axis
the abscissa of the point; that upward or downward from the
horizontal axis, the ordinate of the point. Both these words
had been used by mathematicians in ancient times, though,
of course, in different connections. The word abscissa {ab,
“from,” sciss-, “cut”’) originally meant the same thing as our

Fic. 63
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modemn “lirfe segment,” or part “cut off” from a line which
has unlimited length; as such it was used by Apollonius in
conic sections. Qur word “scissors” comes from the same root
as abscissa, _

Descartes then showed that for every curve, some relatic{n-
ship could be shown to exist between the cotrdinates of 2 point
anywhere on that curve. Thus, in the case of one cufVe, the
abscissa might be equal to one-third the ordinate] or, as we
should say, letting “x” stand for the abscissay$%y” for the
ordinate, y = 3x. <

In another case, the relationship might be expressed as
¥y = 3x + 2, meaning that for any pgint on the curve, the
value of the ordinate would be 2 migre than three times the
value of the abscissa at that poinf.)

In a third case, the square‘of the abscissa added to the
square of the ordinate might\equal 9, and so on.

How could Descartes best express these relationships? [Bear
in mind that we have already made use of his idea, in order to
clarify the first twQ of the above three statements.] He says,
“I thought th 7 . in order to retain them in the memory or
embrace an‘a%grcgate of many, I should express them by
certain characters, the briefest possible.” '

What :h\a.d he in mind when Le spoke of “certain characters,
the hhiefest possible”? He was referring to the algebraic

bolism that was being developed in his day, as we saw in

,u:"ChaPtﬁ‘I‘ IiI. By letting x represent an abscissa and vy an
\. ordinate, he could express relationships such as y = x, or

y = 2%, ot y = 2x -+ 3. The reader who has forgotten his
analytic geometry can discover for himself that each of these
equations represents a straight line, if he will take a piece of
squared paper, draw two axes at right angles, choose two
values for x for each equation, calculate the related values for
¥, ther mark these points and draw a line through them. The
first two lines, y = x, and y = 2x will pass through the
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origin, or point of intersection of the axes; the third line, y =
2x + 3, will have the same slope as the second line, but will
cut the vertical axis 3 units above the origin. If the last equa-
tion had been y = 2x — 3 the line would still have been paral-
lel to each of the last two lines, but would have cut the vertical
axis 3 units below the origin. \
Using this same symbolism, x for the abscissa, y, dor" the
ordinate, the equation x* + y? = 9 will be found to represent a
circle having its center at the origin, and havmg a radivs of
A/9, or 3 units.

Fic, 08

The equation x* — 8x -+ y2 + 4y + 11 = 0, which, with a
little familiarity with algebraic manipulation may be written
as (x — 4)* 4 (y + 2)2 = 9 is of the same “pattern” as the
equation x*> + y® = 9, and will be found to represent a circle
having its center at the point {4, —2), that is, the point whose
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abscissa is +4, and whose ordinate is —2, and having a radius
of 4/9, or 3 units.

y
A

N owadays, when \Q\ rnathema.tmmn sees the equation

+ = =1, (Whl{;h would most probably be given in the

form of Ox? + ‘25)7 = 225) he knows, witbout making a draw-
ing, that i\r.epresents an ellipse whose center is at the origin,
whose semi-major axis equals /25, ot 5 units, semi-minor axis
equals '3/9,0r 3 units, and whose major axis is horizontal. [The

uation also tells him certain other facts, but we will not
comphcate the issue by including them.] The ellipse represent-
ing this equation is shown in Figure 70, page 216.

If given the equation x*+ 4y* = 16, he would turn this

2 2
into the equivalent equation f_() + i 1 [Ellipse; semi-mgjor

 axis = +/16; semi-minor axis = /1]
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N
If the equation were ?3\::"&4‘— 4y? = 36, he would mentally

.. 2D Yyt )
turn it into the form@ + Iy = 1, and would then know, with-

N\
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4

Fiz, 71
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out making a drawing, that it represented an ellipse whose
center is at the origin, whose semi-major axis equals 4/9, or
3 units and is vertical, and whose semi-minor axis equals 4/4, or
2 units.
If he were given the equation 954 54x-+4y" — 32y +1=0 _ A
he would turn it into the equivalent form A
+3 G= L2
16 36 AN
and could then at once say that this must be the equaéiéﬁ of

y v
A X \‘.\‘}

77N\
N ;"

Fre. 72
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an ellipse whose major axis is vertical, whose center is at the
point (—3, +4), whose semi-major axis is 6 units long {that
is, 4/36, and whose semi-minor axis is 4/16, or 4 units 1ong.

In similar fashion he would know that the equation y* —
6y — 6x + 21 = 0, which may be written as (y — 3)* =
6(x — 2), tepresented a parabola opening out toward.the
right, having its veréex * at the point whose abscissa is fla,nd
ordinate -}-3; its focus * one-quarter of 6 units from 1ts vertex
(measured along the axis), and its ladus rectum, ox. lme ‘through
the focus perpendicular to the axis,* equal tos GJJmts

R ~\
y .
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D
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Fic, 73
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F (focus)

Directrix

R
D, s\
',\“’“ Fic. 74

£ ’\ e
* A parabola’is Sthe paih traced oub by & point that moves in such @ way thal ds
distance fro xﬁ:wd line is always the some as iis distance from a fixed poins nob
on ikat LinexTo understand what this means, draw a line DDy Mark a point F,
say 34 inch from the line. Take a rectanguiar block of wood (EWLM in Figure
?@a&:ﬁ"place its shorter edge along DD;. Fasten a piece of tape the same length

WL at corner L and fasten the other end of the tape at ¥. Now slide the
ploék along DDy, at the same time keeping the tape taut alongside WL by means
of a pencil, whose point touches the paper.

Since the length of tape equals WL (which may be written as WP + PL),
and since that length of tape is FP + PL, it follows that WP must equal PF
no matter where the pencil point makes its mark. The path traced out by the
pencil point will be 2 parabola; every point on this path will be the same dis-
tance from DD as it is from F. The line DD, is called the directrix, and the
point F the focus of the parabola. A line through ¥ perpendicular to the directrix
is called. the ewis of the parabola. Its verfex lies on this axis.
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Conversely, if given any particular type of curve, whether a
straight line (which, in this connection, is classed as a “curve”),
a circle, an ellipse, or any other type of curve, a mathematician
writes down the general form of equation - which includes every
curve of that particular type, then substitutes certain dimen-
sions obtained from his particular curve and in this way. ¢b-
tains the equation for the curve with which he has to degl, It is
this kind of working, from the general to ihe part:cular,\that led
to the adoption of the title “analytic geometry.” \

It must not be supposed that Descartes WOrked out all
these things we have been discussing; they were g'radua.lly
-developed by later mathematicians, Bat\Descartes’ genius
was responsible for the idea that lies,behind all subsequent
developments. Instead of dealing, with every geometric figure
separately, his analytic geometry" deals with general, abstract
qualities that lie behind wholegroups of geometric figures, as
we saw just now. Not only did Descartes’ invention revolu-
tionize the treatment oftcenic sections such as we have been
considering, it enabled\the geometry developed by the Greeks
to be treated by sam})le, algebraic methods.

Notice the I(i‘ee} f “pattern’ that now begins to show itself
in algebraic éxpressions, one kind of “pattern” for the equation
of a straighitline, another kind for that of a circle, another for
that of; an ellipse, and-so on. This “pattern” in numbers (or

itequivalent algebraic representations) plays an important

jpart in higher branches of mathematics. It has led many people
“\to believe that mathematics is not just 2 man-made invention,
but that it forms part of the eternal make-up of the universe.

Descartes did not apply his methods to solid figures: this
branch of the subject was developed by various mathemati-
cians, among them being Euler {1707-1783). In this kind of
analytic geometry, three cobrdinates, and the equations of
surfaces bave to be employed, since three dimensions are in-
volved.

‘.
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Ten years after the publication of the Discourse, Descartes
was granted a pension by the French king, on the suggestion of
Cardinal Mazarin, in recognition of his early work. He was
to enjoy it for two years only. In 1649 ke was invited by Queen
Christina of Sweden, the daughter of Gustavus Adolphus, to
become a member of her court. Christina had aroused great {
discontent by her wayward and irresponsible behavior and
was anxious to retrieve her reputation by inviting wnterg'lﬂ{e
Grotius and philosophers like Descartes to ber courtThe
energetic Christina wished to follow the example of the French
nobility and “enjoy” the learned discussions, 6f ‘great phi-
losophers. After much hesitation, Descartes, always susceptible
to royal personages, accepted the mvltatlan\\ahd in September,
1649, sailed for the cold land of Swe&cm in a man-of-war
specially sent for him. Little did he \kwow what was in store
for him; his royal patroness insisted en receiving instruction in
-philosophy at 5 o’clock in the ‘mornmgT Soon Descartes fell a
victim to inflammation of the lungs and in ten days was dead.
Sixteen years later, in 1666, his ashes were taken to France and
interred in Paris. ()

In 1636, the yeéx\before Descartes published his Discours,
G.P.de Roberva] professor of mathematics at the University
of Paris, received a letter from a distinguished contemporary
of Desca,rte‘s “which shows that the idea of analytic geometry
was developed simuttaneously in the minds of two great French
mathematicians. A coincidence like this has frequently oc-
. cuxred in both mathematics and science, two individuals, each

inaware of the work being done by the other, making almost
identical discoveries. We saw this happen in the case of Napier
and Biirgi; we shall see it happen again in the case of Newton
and Leibniz.

While Descartes was working out his analytic geometry, a
quiet, hard-working lawyer in the South of France was think-
ing out the same principles.
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Pierre de Fermat, although busily occupied for thirty-four
years as councillor in the local parliament at Toulouse, never-
theless ranks as one of the greatest mathematicians of the
seventeenth century, when great mathematicians abounded.
Whatever leisure he could find from his legal duties, he devoted
to the study of mathematics and languages. Unlike Descaries
and his other contemporary, Pascal, he was not mterested in
abstruse philosophical arguments; apart from his loye of Greek
and Latin and his interest in Spanish poetry, his one great and
absorbing passxon and hobby was pure mathetfiatics.

We shall see in due course the importance ‘of his work on
tangents to a curve, which anticipated Newton’s more general
work on the calculus some dozen yea.%before Newton’s birth.
In this connection Fermat was led ito a dispute with Des-
cartes, the only unpleasant incident that is recorded in the life
of this hard-working, scholagly lawyer.

Like many another a.mateur mathematician, Fermat found
* unfailing fascination in ‘the apparently valueless study of the

theory of numbers,one of the chief topics in the arithmétike of
the ancient Gregk\ Far from being valueless, these researches
into the propb;fbles of numbers have led to the development of
many important methods in more “practical” branches of
mathegatics. The kind of problem that fascinated Fermat was
to dlsbover whether an odd prime number n (that is, an odd
ti\mber n, which can be divided without remainder only by
},ztsc{f and 1) can be expressed as the difference of the squares of

% two integers in more than one way. Fermat found that there

was only one way of doing this, namely, when the values of the

. 1 -1
integers are 2 ;— and > 7 [For example: can the number

eleven be expressed as the difference of two squares in a.ny other
way than 62 — 5%?].
Another among the many problems he solved was that of
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showing that if a, b, and c are integers such that a® + b* = ¢%,
then ab cannot be a square. One of his own theorems was that
if n is any integer and p any prime number, then (o® — n) can
be divided exactly by p.

When speaking of Diophantus in Chapter IIT we saw that
his Arithmetica was studied by Fermat. The French lawyer{
had a habit of scribbling notes in the margin of his copy. Gon-
sequently, since there was so little space available, his custom
was to note down some conclusion he had reached, ,gp%l omit
the steps by which he reached that conclusion. Oneproblem he
noted down in this way has never been solved,thotigh some of
the world’s greatest mathematicians have puzzied over it for
centuries. The problem is to show thap)ifn stands for any
integer greater than 2, it is impossihlepo find whole numbers
a, b, ¢, such that a» -+ b= = ¢~ Fer:m’zit added “I have found
for this a truly wonderful proof, byt the margin is too small to
hold it.” ) :

In conjunction with Pasdal, as we shall shortly see, Fermat
helped to build the foundations of the theory of probability.

In 1623, when Dedcartes was twenty-seven years 0id, Blaise
Pascal was born, Ab.Clermont Ferrand, in France. He was the
son of a local,jutlge who moved to Paris seven years later.
Pascal’s mother had died when he was four, and his father,
fearing that his only son might be overworked, kept him at
hom§,\\£o 'be educated by tutors under his supervision. Since
the poy displayed great promise, his father, fearing lest his

... bain should be overtaxed, gave orders that his studies should
_be limited to languages and should not include any mathe-
matics, This naturally aroused the child’s curiosity, and when,
at the age of twelve, he heard that geometry was the science
of constructing figures and finding the proportions between
their various parts, he discovered many geometrical facts for
himself, including the fact that the sum of the angles of a tri-
angle is two right angles. It is said that he discovered this last
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fact by cutting out a triangle and folding over its ‘angular
points so that they all met at a point on the longest side of the
triangle. Though not a mathematical proof, this shows con-
siderable intelligence and ability, and, on hearing of it, his
father gave him a copy of Euclid’s Elements. Pascal, then
twelve years of age, devoured the book and quickly masfered
it. Two years later, he was allowed to attend weekly, fiectings
held by Professor Roberval, to whom Fermat bad communi-
cated his discovery of analytic geometry. He.also came to
know Professor Mydorge, who had first interésted Descartes in
mathematics, and other distinguished re@thematicians. This
weekly meeting was eventually, in 1466, to grow into the
French Academy of Sciences, which/was formed six years after
Charles IT had approved of thegéimation of the Royal Society
of London, to which science owes so much. '
Young Pascal’s amazingrecosity is shown in the fact that,
by the time he was sizteeh, he had written a book on conic
sections which showedsuch genius that Descartes refused to
believe that it had‘been written by a boy of that age. 1t was
never published;and now is lost, but Leibniz saw it and spoke
about its conténts. Pascal published a book on conics in 1640.
"His treg{ﬁieut of the subject, in which practically no progress
had bgen made since the days of Apollonius, was based on the
“profective geometry” which had been introduced some years
(previously by Gérard Desargues, an engineer and architect
A3 whose ideas greatly influenced Descartes, as well as Pascal.
The general reader can get an idea of the underlying principle
of this kind of geometry if he makes a paper cone (leaving a
small hole at the point) and places in it any conic section (say
an ellipse or parabola, cut out in paper) in its normal position.
If he looks at that section through the hole at the point of the
cone he will apparently see a circle. Hence, Desargues and
Pascal treated conic sections as projections of circles.

Pascal is said to have deduced four hundred propositions on.
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The *'Mystic Hexagon'”

Fic. 75
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conic sections, including all those given by Apollonius, from a
theorem that is known as the “Mystic hexagon.”

Pascal proved that if any hexagon is inscribed in a conic sec-
tion, the three points of intersection of pairs of opposite sides
will always lie in a straight line.

From the age of seventeen until his death twenty-two years
later, Pascal scarcely knew a day that was free from suffeting.
Nature, that had been so lavish in mental gifts, had been less
generous physically. He suffered from acute dyspepma and at
times was parily paralyzed; yet despite such haheicaps, in his
short life of thirty-nine years he wor lasting fame as 2 mathe-
matician, and still greater fame in the wotld of literature. On
one occasion, Descartes urged him to fellow his example and
stay in bed each day until elever:gx\Bl}t such pandering to the
flesh would not appeal to ong\of Pascal’s restless nature.
Through all his illnesses he, jﬁ\rérked furiously and ceaselessly,
his mind torn, during his Jater years, by anxious thoughts con-
cerning the conﬂlct-—as he saw it—between reason and re-
ligion. ~
When Pascal }Vﬁﬁ seventeen, his father was forced to go into
hiding, havm{\had the temerity to question Cardinal Riche-
lieu’s actiom\in reducing the interest payable on City of Paris
bonds aleéady held by Pascal pere. However, thanks to the
intepgention of Richelien’s niece, Madame &’Aiguillon, the

drdinal not only graciously consented to overlook the out-

. ~,~r§gc but threw in a well-pa.ld job at Rouen as good measure.

So the Pascal family, Etienne the father, his daughters
Gilberte and Jacqueline, and the young Pascal, departed for
Rouen. Here, Pascal amused himself by making the first cal-
culating machine, while soon afterwards an event took place
that was eventually to have an enormous influence on the
lives of at least Jacqueline and Blaise Pascal: the whole of the
Pascal family came under the influence of the Jansenites, or
followers of Jansen, the former bishop of Ypres, in Belgium.
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In 1640, two years after Jansen’s death, a great work this
bishop bhad written on Saint Augustine was published, which
had taken him twenty years to write. In this book he attacked
the Jesuits, who retaliated by their bitter opposition fo his
followers. The Jansenites remained members of the Roman
Catholic Church, although, later, they denied the infallibility.
of the Pope. For eight years, Pascal’s attitude towards religion,
as interpreted by the Jansenites, seems to have been somem(}{at\‘
lukewarm. He became deeply interested in scientific experi-
ments, especially those connected with the barométes, and
began to take an interest in mathemalical probdbility, the
branch of mathematics to which he was to make’his greatest
contribution. PN

The family returned to Paris in 1647 hut left the following
year, returning to Clermont. During\the two years they re-
mained at Clermont, Pascal is beligyed to have had a mild ove
affair with a “belle savante” it whose company be was fre-
quently seen, but nothing isjliiédrd of her after 1650, when the
restless family returned to-Paris once more. The following year
Etienne Pascal died,cand Jacqueline entered the convent of
Port Royal, a nunnery in Paris connected with its more famous
namesake some gight miles outside Versailles.

Meanwhile, Pascal and Fermat had laid the foundations of
a new branehi’of mathematics. 1t arose from a gambling prob-
lem senb.to Pascal by a gamester, the Chevalier de Méré.
Pasggfl\worked out his solution of the problem, then asked

) Eetmat to work it. Both agreed as to the answer, but gave
 difierent proofs. As a result of the discussion that took place
between Fermat and Pascal on this subject, the idea of mathe-
matical probability emerged. Today, the child born on a gam-
bling table has grown into a dignified and important member
of the family of mathematics. Tt is essential in actuarial'and in-
surance work and in all branches of mathematical statistics
and some branches of modern physics. In working problems of
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probability, Pascal made use of arrangements, or combinations.
In mathematics, a combinaiion of a set of things Is a group of
all or of any part of them, without regard to the order in which
the things in the group are arranged. Today we have a simple
formula which enables us to find the number of combinations
of, say 10 different things taken 4 at a time, but Pascal had(ho
such assistance. He found out, almost uncannily, that a‘pat-
tern” of numbers known as an arithmetic triangle would tel’him
at a glance the pumber of combinations he required. This
“triangle” is now geperally known as Pascol’s. triangle, al-
though he did not invent the “triangle” i1e6lf Certain num-
bers are written down as shown in Figure 76.

Having set down the 1's in the top,line and the left-hand
column, the number to fill any empty space is obtained by
finding the sum of the number abeve that space and the num-
ber on the left of that space, @hus, the number that would go
on the right of the 7 in the%second row would be 8, the number
under that 7 would be-28.

Pascal’s remarkablefeat was to discover that by making use
of diagonals and.Golimns, he could obtain the answers to prob-
lems involvigg\t ese groups, or combinations. Thus, the num-
ber of corbinations of 4 things taken 2 at a time is found in the
4ih. diageTnal and 3rd. column, namely, 6. The pumber of
combifitions of § things taken 3 at a time is found in the 5th.

.(jié'gbilal and 44k, column, namely, 10. The number of combina-
«tions or groupings of 7 things taken 4 at a time is found in

'S
N

the 7#k. diagonal and 5¢k. column, namely, 33.
[Pascal also used this “triangle” for working out expansions
such as @+ b)% (a+ b)%, andsoon. i a binomial, or ex-
pression containing two terms, is to be raised to the 2nd.
power, the numerical coefficients in the answer will be found on
diagonal 2; if to the 3rd. power, on diagonal 3, and so on. Thus:
{a 4+ b)2 = (1a®+ 2ab + (1)b%
(a4 by = (1)a® -+ 32’ + 3ab® 4 (b3
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(a ANbJt = (1)at + 4a®b + Ga%h® + 4ab® 4+ (1)bY;

a3 bt = (1)a® 4 5a'h 4 10a%bh? -+ 10a%h® + Sabi + (1)bs]

Soon after Pascal had worked out the foundations of the
theory of probability, a great change came over his life. Ex-
cept for one brief mathematical interlude, he turned his cre-
ative genius into new channels. On November 23, 1654, while
driving to Neuilly, his horses bolted; had not the traces
snapped, he would have been hurled into the river when the
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horses plunged over the parapet of a bridge. Pascal regarded
this escape from death as a warning from heaven. From this
moment he devoted himself to religion. We are told that he al-
ways afterwards carried a parchment slip bearing some lines of
mystic devotion; this slip of parchment became known as
“Pascal’s amulet.” From this time onwards, he frequentlyire-
sided at Port Royal, outside Paris. This had been a well-known
Cistercian abbey as far back as 1204, one of its otuetts being
to provide a retreat for laymen who wished to withdraw from
the world for a time without binding themselves with perma-
nent vows. At the time of which we are spgakmg, when Pascal
was thirty-one, a distinguished follower’ of Jansen resided
there. This was Antoine Arnauld,&\great theologian and a
member of the Sorbonne, whichwas then the name for the
faculty of theology at Paris Whiversity. Arnauld had fallen
foul of the Jesuits, owing todis support of Jansen. In 1656 they
prevailed on the Sorbonme to expel Arnauld and deprive him
of his doctorate. Thereupon Pascal composed the first of
eighteen Letters Wititen to @ Provincial, which, together with a
work published’ after his death and called the Pensées, is now-
adays regarded as one of the great classics of French literature.

The Proviwsial Letiers, as they are known for short, are a de-
fense of Adnauld and are full of scathing attacks on the Jesuits.

The Pensees consist of notes he wrote down while preparing a
19@0]; which was to have been a defense of Christianity. In
}658 however, his health finally broke down completely, and
after some years of suffering he died in 1662 at the age of
thirty-nine, before the book was finished.

The only mathematical work he did after his “conversion”
at Neuilly was in connection with the cycloid. If a circle rolls
along a straight line, any point on that circle traces out a curve
that consists of a series of “arches’ like the one shown in
Figure 77. Such series of “arches” is called a ¢ycloid.

Pascal was lying in bed sleepless and tortured by toothache.
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His mind, so long concentrated on religious topics, turned to
mathematics. and he began to think of this most interesting of
all curves, the cycloid. After a time he suddenly realized that
his toothache had ceased. Taking this as a sign from heaven
that he was not committing a sin by thinking of mathematics
instead of what he felt to be higher matters, he returned to his

Fre. 77 D

old love for eight strenuous days, dﬁrij:lg that time solving
many problems connected with thisg ourve and with the surface
and volume of the solid that is generated if it is revolved about
its axis, or about its base, of* about the tangent at its vertex.
In doing this, he made us ‘oF Cavalieri’s indivisibles, which we
shall shortly conside . (Some of the strange facts connected
with the cycloid ate that the area under each “arch” is exactly
three times thatbf the circle; the length of curve in each
“arch” is ex ct,l\y four times the diameter of the circle; if an
“arch” of aé¥cloid is inverted. like a bowl, an object will al-
ways takethe same time to slide down to the lowest point no
matteriwhere it starts. So the cycloid is known as the zazufo-
‘3”9?36' (line of “the same time”). This last fact was not dis-
\Ovcred until 1673, when the great Dutch scientist, Christiaan
Huygens, showed how this property of the cycloid could be
applied to his invention of pendulum clocks.
It is idle to speculate as to what Pascal’s amazing brilliance
might have achicved had he been granted normal health,,and
devoted his life to mathematics and scicnce. As it was, during
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the few years he gave to mathematics, he contributed so much
to the subject that he won a lasting place among the great
mathematicians of the seventeenth century. Not only did he
lay the foundations of mathematical probability, but by per-
ceiving the “pattern” that exists in certain groups of numbers
and in certain mathematical expressions, he pointed the way
for the development of a great deal of higher algebra, More-
over, during the eight days he spent on solving prohlemis con- .
nected with the cycloid, his mind turned irom the'philosophi-
cal contemplation of absolute infinity to that of mathematical
infinity; concepts of infinity, continuity agd ¥limits™ lie be-
hind all modern mathematical analysisia\J '
From the time of Pythagoras to that of the seventeenth cen-
tury, mathematicians went to grea{ic\ngths to avoid the use of
the idea of infinity. The Greek$ofEuclid’s day restricted their
work to investigating the figite'propertics of geometric figures.
Archimedes, more daring, @pproached the idea of infinity, but
with great skill avoided\ts actual use by adopting complicated
and roundabout expedients. Not untii the seventeenth century
did a mathematiejan, Kepler, boldly make use of the idea, ap-
parently ignc’)gfng and certainly brushing aside the many intel-
lectual difffgulties with which it bristles. His example was
followed®y Cavalieri, Pascal, Wallis, Newton (who, in one of
his Yater writings suggested a more logical process) and
dibniz. The storm of protest that arose from their use of con-

. }j&pts of infinity caused Maclavrin (1698-1746) to develop
»Newton’s later approach to the subject, by which the use of il-

logical statements was avoided by the concept of a limif. All
these matters will be dealt with in due course; we will first
trace, in as simple a manner as the subject permits, the roots
from which these various idcas and methods sprang. Only by
doing this can we understand the processes involved and the
violent controversies aroused by the manner in which they
were first presented.
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Mathematicians first ran into the puzeling problem of in-
finity when the Pythagoreans found themselves baffled by the
apparently simple and guileless problem of finding a number by
which the length of the diagonal of a square could be expressed.
The best they and all subsequent mathematicians could de
was to find an approximaie value for such a length.

The Pythagoreans invented a very neat and interesting A
method forfinding successive approximations for +/7, a glaned. ™

at which will help us appreciate some of the difficulties cott-
nected with “infinity.” Their actual method is given in Heath's
History of Greek Mathematics, Volume L. Simpﬁﬁ@ﬁ trans-
lated into modern notation, it is substantially as fotlows:
Build up two columns of numbers, each Aedded by “1.”
Each succeeding number in the left-hand-column is equal to
the sum of the numbers last written in(the'iwo columns; each
succeeding number in the right-hand\column is equal to the
sum of its corresponding number.n the left-hand column and
the number previously writtendn'that left-hand column. Thus:

1 A 1

20° 3

N5 7

12 17

O\ 29 41
PRSI () 99
\\ . etc. etc.

It we jﬁ(;w successively divide each number in the right-hand
Oalfllhn by its corresponding number in the left-hand column,
“and group these answers in pairs, it will be seen that the first
answer in each pair is Jess than any answer that follows it, the
second answer in each pair is greater than any answer that fol-
lows it; the square root of 2 lies between each pair of answers,
and the farther we go down the list, the closer does each pair
dlose in on the value of +/2, although no matter how far the
process is. continued, the two answers concerned never close

Q"
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in on it completely, by coinciding. No matter how far we carry
the process, all we can say is that /2 is “a little more than this,
a little less than that.” Using modern notation, we see that the
decimal never “repeats,” as does that for o which, of course,
has a definite and known place on the number-scale. 8

We will mark with an L the answers which are less(than all
those that follow them; those that are greater than all that

follow them will be marked with a G. N
/2 lies between each of ihe following pam qf answers:
f1 L) N
1:5 (G)
H S
11-416,:(G)
(14130 (1)

11~41428 (G)
“SVete. ad infinitum.

Highly ingenions ¢ afid interestin g though all this may be, it
does not explain th€miystery of +/2. As an Irishman might say,
its value lies at the bottom of a bottomless well.

Obviously, ‘the “value” of +/2 (if it exists at all) lies some-
where qn/thie number-scale between the definite points on that
scale }Q@?kmg the positions of 1413 and 1-41428, though we
couldnsert an infinite number of closer points between 1413

@&d\/ﬁ, and between /2 and 1-41428, as we saw just now. As
A\ was noted in Chapter III, the impossibility of expressing +/2
' exactly as a number upset the Pythagorean view that any two

lengths must have some common measure. If a line AB is 8
inches long, and a line CD is 22 inches long, AB can be divided
exactly into four portions, each 2 inches long, while CD can be
divided exactly into eleven of those portions. The lengths AB
and CD arein this case said to be “commensurable.” But no
matter how far the process of subdivision is carried, it is not
possible to find a unit small enough to provide a common
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measure for the diagonal PR and the side PQ of a square
PQRS. In this case, PR and PQ would be said to be incom-
mensurable.

The Pythagoreans were thus forced to abandon their original
conception of a line or number-scale as being made up of points
like tiny beads, each “bead” being of finite size and just like ,
all the others.

They were now led to conceive of a line as being made upsﬁf
an infinite number of dimensionless points. But here @gain,
they ran into difficulties. They found themselves drawn into
the metaphysics of Parmenides, whom we met pfg page 110,
and who expounded the view that matter (forinstance, a line)
was indivisible. O

The “Theory of Numbers” sounds si plg enough; in reality,
as we shall now see, it can be exceedingly abstruse. It merges
into philosophical concepts before we realize where we are
heading, especially at the presettiday. The one subject blends
into the other very muchin theway that Archimedes’ polygons
{page 61) would blend into 2 circle if the number of their sides
were indefinitely incréased. (Archimedes was careful not to
say this, howeverg{ ™

The question’as to whether a line could be regarded as being
made up of afinfinite number of peints came to 2 head when a
pupil of Parmenides, Zeno of Elea, thought up certain para-
doxes,, ejglit of which still survive in the writings of Aristotle
and §imiplicius, but four of which were sufficient to frighten
nathematicians away from using the idea of “infinity” until

({\the seventeenth century, when mathematicians had become so
deeply interested in the application of mathematics to the
realities of time and space that they ignored logical difficulties
and developed the “infinitesimal calculus.” We must bear in
mind that until the time of the Renaissance, mathematicians,
with the partial exception of Archimedes, regarded their sub-
ject as a purely intellectual form of reasoning based on certain



236 MAKERS OF MATHEMATICS

rigid principles. Antiphon (page 60) had aroused bitter op-
position when he had tried to “square the circle” by the
“method of exhaustion.” The objection seems to have been
that the mind had to jump across the final steps in this process
and could only imagine them as happening. So philosophers
like Aristotle, who lived just before the time of Euclid,de-
clared that Antiphon’s method violated “geometrical ‘ptin-
ciples.” Aristotle does not appear to have objected to*the no-
tion that a line consists of an infinite number of pemts since
he declared that Zeno’s paradoxes, one of which'we are now
going to consider, were fallacies (though he ¢ould not refute
them). Greek mathematicians, however, saw qulte clearly
that Zeno’s arguments were fatal to ‘Ibfinitesimals.” Conse-
quently they avoided using the 14@ of “infinity” as they
avoided the plague. Even Archindedes was careful to avoid the
notion (except, as we shall see, in his own pnvate “method”
for getting a rough idea of\what to aim at in a rigorous geo-
metrical proof which would follow his preliminary 1nvest1ga-
tions) and in his formal proofs contented himself by saying
that the dxﬁ’erence hetween two areas could be made *“as small
as we pleased 2™ '

To come fo.one of Zeno's paradoxes, which will be sufficient
for our purpose. A paradox is a statement that seems absurd
at firsgsight but which is actually well founded. To show that
a linéxcould not (in his opinion) consist of an infinite number of
poitits, he declared that if it did so consist, it would be impos-
\\sible for a body moving swiftly to overtake a body moving
" slowly. He pictured a race between Achilles and a tortoise.
Let us suppose that Achilles can run 10 times as fast as the
tortoise, and let him give the tortoise 1000 yards start. By the
time Achilles has covered the 1000 yards, the tortoise will be
100 yards ahead; by the time Achilles has covered that 100
yards, the tortoise will be 10 yards ahead; by the time Achilles
has covered that 10 yards, the tortoise will be 1 yard ahead;
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by the time Achilles has covered that yard, the tortoise will

be _1% yard ahead; by the time . . . etc., ad énfinitum. There-

fore, said Zeno, Achilles never catches up with the tortoise;
he is constantly getting nearer to it, but never actually reaches
it. This paradox still perplexes even those who know that it is
possible to find the sum of an infinite series of numbers form-
ing a geometric progression whose common ratio (page 176X
is less than 1, and whose terms consequently become smaller
and smaller and thus “converge’’ on some limiting valué, “The
sum of such an “infinite convergent series” is giventby the

a \\Y .
formula 1 , where a stands for the first tern{ ih'the series, r

for the common ratio (which must be Jess *t\han 1). So the
distance Achilles runs is represented by theinfinite convergent
series 1000 4+ 100 4+ 10+ 1 + . .o and its sum will be
1000 1000 10000 N
, Or , OF
L2
10 10 RA
tance run by the tortg;st“..wi]l be the sum of the infinite con-
vergent series 1005+ W0+ 1+ .. ., which, by the same

, OF 1‘1:1'%' yards. Similarly, the dis-

formula, will bedeund to be 111% yards. So even although we

have had tg'i}e\al with an infinite number of subdivisions, we
have bqq&ﬁle to arrive at their sum. The paradox, however,
which werried the Greeks exceedingly, has not been explained,
eved.though we have shown that we can arrive at a solution
that agrees with the facts of experience that we classify under
the vague and often misleading heading of “common sense.”
If we keep on adding diminishing quantities of sand to a pile
of sand, we can eventually reach a point when the operation
comes to a stop with the addition of 1 grain of sand to the pile.
Similarly, if we hang a weight by a piece of string and allow it

N
N\

.\. \
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to swing to and fro, the “pendulum’ eventually comes to rest.
In the case of the pile of sand, we came to an end of the opera-
tion of addition when we reached the number 1; in the case of
the pendulum, we could, up to a point, express the lengths of
successive swings by employing fractional parts of a unit
of length. Our concept of “numbers,”” however, permits us\to
conceive of unending additions of ever-diminishing fractions
of a whole. Unlike the final gram of sand, we can gn on" addmg

1 1
EOf a unit, —— 100 of a unit, ~—x 1000 of a unit . - & ,,.Qr any other

series of diminishing fractions of a unit. Is if that our number-
system is madequate to interpret the realities that lie in time
and space, or is it, as some would say with Plato, that what we
imagine to be realities are really only’ shadows of reality? Is
mathematics merely an imperfact.invention of man, devised
for the interpretation of what, most of us regard as “reality”?
Or should mathematics hé elassed with such phenomena as
gravitation and light, whith existed before man appeared on
the earth? In other,wotrds, did man “discover” mathematics
or “invent” mathe‘matlcs?

Bertrand e]l one of the most profound philosepher-
mathematiglans of the present day, has admitted that the
“immeagtrably subtle and profound” arguments of Zeno still
“teaseyout of thought” the average man. Even the abstruse

n%ments put forward by Dedckind (1831-1916), Cantor
(1845-1918) and Russell (1872- ) in their mighty efforts to

f \Straighten out the paradoxical problems of infinity into which
we are led by our concept of “numbers,” have resulted in the

creation of still further paradoxes. These discussions are too
profound and abstruse to be dealt with in non-technical
language. The reader who is unfamiliar with them and who
wishes to pursue them should start by reading J. W. A.
Young’s Fundamental Concepts of Algebra and Geometry and
follow this up with Dedekind’s Essays on the Theory of Num-
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bers (published in America by the Open Court Publishing
Co.}. He may then be able to tackle Cantor’s Confributions
to the Foundation of the Theory of Transfinite Numbers (this
English translation is published by the same company), and
finally, Russell and Whitehead's profound and abstruse
Principia Mathematica.

Fortunately for modern science and astronomy, mathes

maticians in the seventeenth century paid no attention oo

Zeno’s paradoxes. Ignoring logical imperfections in theiruse of
infinitesimal quantities, they developed methods.hereby
whenever a quantity changed in value according t@ some con-
tinuous law (as most things in nature change):the rate of in-
crease or decrease in such change could be measured. Later, as
we shall see, when these logical imperfe€tions were avoided,
mathematicians, scientists, engineedyahd countless others
were given a mathematical machine ool called the infinitesimal
calculus, which enabled them topry open secrets of nature that
had been a closed book to thielr predecessors. These problems
involved, in the main, cofitinuous growth or continuous mo-
tion, and thus embraced vast new fields of sciepce and as-
tronomy. Again, by*dn inverse process, the original changing
quantity could he found from its rate of increase or decrease.
Moreover, the.application of a single rule took the place of
elaborate individual calculations in finding such things as the
lengths‘si~éurves, the areas enclosed by them, the surfaces of
solid,bodies, the volumes of solids, and many other problems.
. (The “infinitesimal calculus” includes the “differential
chlculus,” or (originally) the method of calculating the in-
finitesimal difference between consecutive values of quantities
that continuously vary, and the “integral calculus,” whereby
a changing quantity can be found from its rate of change.

We shall have to go back to Archimedes in order to trace the
roots from which the “integral calculus” grew; then we shall
see how the “differential calculus” arose, and finally, how

Q.



240 MAKERS OF MATHEMATICS

“integration” was shown to be the inverse of “differentiation.”

One of the first seventeenth-century mathematicians who
stepped in where even Archimedes had feared to tread was
Bonaventura Cavalieri. As was to be expected, he was
prompily classified by most of his contemporaries with those
who depart from the well-trodden pathway followed by thode
who, taking no risks, reputedly join the angelic band, O\

This brilliant Jesuit was born at Milan in 1598 two years
after the birth of Descartes, and studied under Galileo, When
thirty-one years old he was appeinted a pr?fgessor of mathe-
matics at Bologna, which appointment h¢ yetained until his
death in 1647. When we come to glancg at'his work, it will be
clear to those who have seen the diffieulties raised in Zeno's
paradoxes that he deliberately igncjn\ed obvious inconsistencies
in his own arguments. It would be/interesting to know what led
this acutely minded man today himself open to certain attack.
It may well have been thatso strong was his intuitive certainty
that for the correct intérpretation of most natural phenomena
one thing must he{egarded as “merging” into another, that
he used al‘gun{qit,:-;t he must have known to be illogical but
which he fofnd'led to correct results.

The mathematical principle of continuity which had been
stressed\by Kepler lies at the root of Cavalieri’s thought. This
'Px'QciwpIc recognizes the way in which one thing “merges”

ifito another, even though we cannot say exactly when or how

Athe “one thing” ceases to be and the other thing comes into
' being. Imagine, for instance, a section of a cone whose outline

is an ellipse (Figare 25, page 54) slowly swinging over until
its outline becomes the circle in Figure 26. How does it change?
By a sudden “jerk””? Or does one outline blend imperceptibly
into the other? Is there a continuous change in all movement
and growth, or are these processes a vast aggregation of minute
jerks? Unquestionably, when Cavalieri had studied Archi-
medes’ method of calculating the circumference of a circle
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(page 61) he must have sensed the stcady growth of the in-
scribed polygon’s perimeter and the steady shrinking of that of
the circumscribed polygon as both these perimeters ap-
proached the length of the circumierence. Instead of adopting
the highly ingenious, though complicated and roundabout
methods used by Archimedes, he found he could get similar
results by making use of the idea of infinitely small values.
So he used those values. O\

Two wonderfully ingenious solutions made by Archimedes ™
made a deep impression on Cavalieri. These were two diﬂg}'ent
methods he had used for efiecting the guadrature of)a para-
bolic segment. “Effecting a quadrature” meanbﬁﬁdmg the
area of a square that would be cxactly equal\tq that of some
figure bounded by a curve. Frequently, t};ig‘%'a:s done by find-
ing the area of an equivalent triangle; gnce this was done, the
problem was as good as solved, sincditIs a simple matter to
construct a square equal in area i3 triangle.

We will first consider a purely® geometric method used by
Archimedes for finding the‘aréa of a parabolic segment. He
inscribed a triangle (AB\C‘“ i Figure 78) with the same base

N\

as the parabolic sr:%eﬁt, the vertex of the triangle being
the point of contagt of the tangent (not drawn below) parallel
to AC. N/

Fic. 78
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He then showed that the area of the parabolic segment was
% that of the triangle ABC. To do this, he employed the
“method of exhaustion,” though, unlike the example of this
method we discussed on page 61, he “exhausted” the area in
this case from the “inside’ only. ‘

First, he drew triangles ADB and BEC “in the recognized
manner,” that is, placing vertex D at the point of contact(of
the tangent to the parabola parallel to AB; vertex E @t the
point of contact of the tangent parallel to BC. Thusyeach of
these smaller parabolic segments was treated on the sime lines
as had been followed for the original segment. /5 R

Archimedes then showed by Euclideanlgéometry that
AADB + ABEC - $AABC. ’

Now he repeated the last process, drawing triangles “in the
recognized manner” in each of the‘sl’iﬁi‘ied segments shown in
Figure 78. He showed that théysum of their areas was
1(AADB + ABEC), or 75(AABC), that is to say, using
modern symbolism, (3)?’AABC.

He argued that by repeating this process indefinitely {in
imagination) the parabelic segment would approach “as near
as one wished” to a‘f&haustion,” since, with each step taken,
more than half*6f the remaining segment(s) would be ex-
hausted. Forinstance, take the first step, involving the tri-
angle AB@\n'Figure 79.

M is the mid-point of AC, and AP and CQ have been drawn
pargllel'to MB, meeting the tangent at B at the points P and
Qxespectively.

S Now, AAMB = § parallelogram MP;
. :

ACMB = § parallelogram MQ,
o ANABC = % parallelogram AQ.
But parallelogram AQ is greater than the parabolic segment;
- 7 parallelogram AQ) is greater than I the parabolic segment;
5 AABC is greater than & the parabolic segment.
It follows that each new triangle “exhausts” morc than half
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the segment in which it is drawn. So Archimedes argued that
by continuing this process of exhaustion indefinitely, the dif-
ference between the area of the parabolic segment and the
sum of zl} the triangles could be made as small as desired. But

FiG. ?9 f:.’ "
was it possible to find the sum of such triangles? Here we meet
vet further evidence of the‘gemus of Archimedes, for he proved
geometrically that th{\sﬁm of an indefinitely long series of
areas, in which anycarea was one-quarter of the area preceding
it in the series, was equal to 4 the first area in the series. In
this way Arc}nmedes again made mathematical history, for he
had found\hb sum (as we should say} of the infinite convergent

series ;,j\

"\ 14+ 1+E+ @+

hick, as we saw on page 237, can be found by the formula

= =1
s wherea = 1, r = ¢

1wr

Archimedes was therefore able to say that the sum of
AABC,1AABC, (1)2AABC, GPAABC,. . .lor AABC(1 +
1+ @24 3P4 .. )] was $AABC.
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To avoid the use of the concept of an infinite number of tri-
angles being inserted “in the recognized manner,” Archimedes
made use of reductio ad absurdum, a method frequently used
by Greek mathematicians to prove that two things were equal.
They argued that if, for example, it can be shown that it is
absurd to say that A is greater than B, and also absurd tosay
that A is less than B, it must follow that A is equal tg B.'In
this case, Archimedes showed that the area of the(Segment
could not be greater than § the area of AABC, and also that it
could not be less than 4 of that area. It followed{hat ihe area of
the parabolic segment was § the area of the tricngle inscribed in it;
and having the same base and height as3ke parabolic segment.

We must now glance at another method used by Archimedes
for arriving at the same conclusiony sirice it also played a part
in suggesting to Cavalieri and\ether seventeenth-century
mathematicians the methods\ad6pted by them in developing
the early stages of what isHow the integral calculus.

In 1906, Dr. Heiberg giscovered in Constantinople a letter
written by Archimedes to his friend the librarian Eratosthenes
(page 49). In this letter, Archimedes tells his friend the
method of induity, or analysis, he used when tackling certain
problems catinected with area and volume. He made use of his
great khowledge of mechanics in order to get an idea of the
solutign"at which to aim in a subsequent rigorous geometrical
pl'\f{oi' To quote his own words, as translated in Heath’s
History of Greek Mathematics: “Certain things first became

% clear to me by a mechanical method, although they had to be

deronstrated by geometry afterwards because their investiga-
tion by the said methed did not furnish an actual demonstra-
tion. But it is of course easier, when we have previously
acquired, by the method, some knowledge of the questions, to
supply the proef than it is to find it without any previous
knowledge.”
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The underlying principle of this method can be understood
by anyone who has balanced another person on a seesaw. I a
man weighing 150 Ib. wants to balance a boy weighing 50 1b.
and seated 6 ft. from the point on which the seesaw balances,
he must sit 2 ft. from the point of balance. In other words, the
ratio between the weights of boy and man (3%%, or §) must
equal the ratio between the distances of man and boy re-

spectively from the point of balance (3, or §). O\
N\S ¢
150 Ib.
Y
N
v, L& _
50 ib. P \4
+ 5 1 1 ' L 'i\ X 1 L 1 1 -
6 it. NN 21,

Box 6 A =150 x 2
\

\\ ~/ ¥, 79A

N

Using this,(g{;i\nciple, Archimedes was able to discover the
trath be Jatdr proved geometrically (as we have seen), about
the a,rga:\\f "a paraholic segment. He drew diagrams in which he
pictuted’ an unknown area, such as that of the triangle QER
in Figure 80, balancing a figure of known area, each being

uSpended from a balance, from points vertically above their
respective centers of gravity. [Figure 80 has been drawn up-
side down so far as this balancing process is concerned; our
interest lies in matters which can more easily be grasped if the
figure is drawn as shown here.]



MAKERS OF MATHEMATICS

246




FORERUNNERS OF NEWTON 247

By a wonderful and elaborate application of the mechanics
connected with a balance, Archimedes showed that

(1) thearea of AQER was 3 times that of a known atea, as
suspended from a certain point on his imaginary balance;

(2) the sum of the areas which are horizontally shaded in
Figure 80 (namely, trapezia RiOs, R:0s, R0y, RaOs, Ri0n,
and triangle R,0.Q) was Jess than the known area in {1);

(3) the sum of the areas which are vertically shaded in ¢

Ny

Figure 80 (namely, trapezia FO, F10s, F:.0s, ¥304, FiOx,
F;O., and triangle E,0.Q) was grealer than the known.drea
in (1). O\

Tt followed that the horizontally shaded areas were together
Jess than 1 the area of AQER; the vertically sheded areas
were together greater than 1 the area of AQEI{\ %

Archimedes then showed that by increasing the number of
parts into which QR and RE are divided; the difference be-
tween the vertically shaded and the. j;brizontally shaded areas
can be made as small as desired, sifice it can be shown that this

$

difierence in the areas is equalito triangle FOR, which gets

smaller and smaller as the‘ntumber of divisions is increased.

By this process of ¢ Kanstion, Archimedes shows that the
area of the segment,n\mst be equal to the known arca in (1)
above; in other wotds, he finds by this method that the area
of the para.boli\e:ségment is 1 that of the triangle QER, and he
easily proves.geometrically that this triangle is 4 times as large
as a trianglé with the same base and the same beight as the
segmeftt So once more it follows that the area of the parabolic
gaeggaént is 4 the area of such triangle.

Archimedes does not use reductio ad absurdum in this me-
chamical method used by him for discovering results which
later he would prove geometrically by the method of ex-
haustion, coupled with its double reductio ad abswrdum.

More than eighteen centuries were to pass before the seeds
thus sown some 250 years before Christ were to spring into

\
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Life. Fortunately, they were not lost, but were stored away all
those years in a few manuscripts. In the third century A.p.
some Alexandrian mathematicians quoted from Archimedes’
works, and in the ninth century all the then-known works
were collected together and copied in Greek for the University
of Constantinople, which city, fortunately, had not fallem,
into the hands of the barbarian ancestors of many of us. This
manuscript came into the possession of the Norman k{tngs of
Sicily in the twelfth century, from whom it passed to,Manired,
King of the Two Sicilies, in the thirteenth century “Fhis ruler
fell foul of Pope Urban IV, who persuaded Chatlés of Anjou to
come to his assistance against Manired, whe had overrun the
"papal states in Tuscany. In 1266 Charles defeated the Sicilians
at the battle of Benevento. Ma.nfred'was kilied in the battle,
and part of the spoils of war was thisninth-century copy of the
works of Archimedes, which Charles sent to the Pope. It re-
mained in the papal library. \mtil the end of the fifteenth
century, when it passed mtq private possession, and has since
been completely lost, ~F0rtunate1y, however, while still in
papal hands it had bee;‘n transtated into Latin (this translation,
made in 1269, is 51'\1‘11 in Rome) while at least four Greek copies
are known to have been made. The first edition of the works of
Archimedes, 10’ be printed was based on one of these Greek
copies. It'was published at Basel in 1544. Fourteen years later,
a Latid translation was published, and there can be little doubt
thatitwas through this edition that the genius and inspiration
ai Archimedes became fully known to the brilliant mathe-

{\taticians of the seventeenth century. This Latiu translation

contains the Measurement of a Circle, On Spirals, the Quadra-
ture of the Parabola, On Conoids and Spheroids, and the Sond
Reckoner. [In addition to these works of Archimedes, other
manuscripts have preserved his books On the Sphere and Cyi-
inder, On Plane Equilibriums, and On Floating Bodies. As al-
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ready stated, in 1906 another Greek manuscript was discovered
in Constantinople that included the Method.]

At last the seed that had lain so long in dusty manuscripts
fell on fertile soil and sprang to life in the minds of Kepler,
Cavalieri, Pascal and subsequent mathematicians.

We saw that Kepler, in 1613, had become interested in the
problem of gauging the contents of a wine cask. He conceived

of a circle as being composed of an infinite number of tiny i ),

angles having their vertices at the center and their infihi-
tesimally small bases in the circumference. By a similarjtrain
of thought he regarded solids as composed of an idfinite num-
ber of infinitely small cones (or disks). His method for finding
the volume of a solid was to imagine the figure that would be
generated by a curve that revolved about Seme axis.

Kepler’s idea of infinitesimally small\parts, combined with

the principle of mathematical continiity mentioned on page
240 prepared the way for Cayalieri’s method of indivisibles.
Although Cavalieri did not ,ga"j ‘exactly what he had in mind
when using this term, it igevident that he was making use of a
concept discussed by Asistotle and medieval philosophers like
Thomas Aquinas, With Whose works Cavalieri, being a Jesuit,
would be very faffiliar. To them, a point was the “indivisible”
of a line; a Jixté/the “indivisible” of a surface; a surface the
“indivisible’ of a solid. In Cavalieri’s final treatment, each
“indivisible,” by moving, could generate the next higher
“continium” (a term now used by mathematical philosophers
like Russell for the infinite numbet of points on a line). Thus,
< 3 moving point generated a line; a moving line generated 2
surface; a moving surface generated a solid.

Cavalieri never gave the area of a figure as being “‘so many’’
square units; he compared the size of one figure with the size of
another. In other words, he found the ratic between the re-
quired area and that of some other easily calculated area, thus

Q!



A O\ : 2
w3 8ave time in later computations.]

250 MAKERS OF MATHEMATICS

following the method adopted by the ancient Greeks. It was
John Wallis (1616-1703) who introduced our present method
of expressing area, as we shall see.

The next three figures will explain in a simplified way the
general idea that lay behind Cavalieri’s use of “indivisibles.”

Figure 81 shows, on the left, a rectangle that has been, di-
vided into five small rectangles, each having the samé area.
The number of units of area in each is 1mma.tena.l Ssince we
are going to find a ratio. \ ~'

The shaded figure in the center consists of ayseries of rec-
tangles having arecas which increase uq;Q)rmly in size, the
lowest rectangle having the same arealas each of the small
rectangles in the left-hand figure. The)teader must imagine a
“rectangle” having no area at thé(top of these “‘steps.”

The figure on the right shows the center figure placed on top
oi the left-hand figure. Lef\us"now compare the area of the
shaded part of this ﬁgure with the arca of the whole large
rectangle. N

Shaded pagt, 0+ 1-4+24+3+4 10

1
Whole rec{a}rgle Ab4+d+44+4 2 7
(cH— nfa +1)

[Xf we remem\Ber the formula S giver on page 70,

we can ﬁlld the sum of the numbers in ‘rhe numerator by finding

173 (
> yalue 5 0 ;_ 4), or -5—(4), or %2—0, or 10. This method will

Now repeat all this process for the figures shown in Figure
82. '
The ratio is now
Shadedpart 0+ 14+2+...+8+9 45 1
Whole rectangle 10(9) 99 2
Now repeat the whole process for the figures shown in Figure
83. '
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Shaded part ~ 0+4-1+24...4+18+19 190 {

Whole rectangle 20(i9) 380 2

We see that in each of the Figures 81, 82 and 83, the shaded
part is § the whole rectangle. We can also see that, provided
we keep the “steps’ equal to each other in any one figure, the
more we increase the number of “steps,” the smaller does each

“step” become. We can imagine such an immense number of

“steps” that their outline would be mdlstmgulshable from that
of a straight line. The shaded part would then e’ indistin-
guishable from a triangle. Now we know from{geometry that
the area of a triangle is § the area of the rectangle on the same
base and having the same height, which{gesult, as we have
seen, corresponds with the area of any of the shaded parts in
the above right-hand ﬂgures—and\p esumably, in those we
imagined to exist. So it certainfjilooks as though the jagged
outline of the “steps” must eventually merge into a straight
line. The dlﬂicult} hes in, expressmg this idea in logical lan-
guage.

Cavalieri’s actual method was more complicated than that
shown in the above outline, and involved illogical concepts.
For instance, nnagmed each small rectangle to be com-
pressed to siich ‘an extent that eventually it became the “i
divisible)’t hne which had originally generated that small
rectang{e

Cavalieri used. his method to find the areas enclosed by cer-
tdin‘curves and the volumes of certain solids. His work, though
N lmsmentlﬁc gave the correct result in many difficult problems

~\’ and was developed by other mathematicians until eventually it

becam? the integral caleutus. As we have noted, Pascal used
“indivisibles” in working out problems in connection with the
eycloid. He explained that by the “sum of right lines” he
meant the “sum of infinitely small rectangles.”
The scene now changes to England, to Oxford, that city of
spires, of quiet quadrangles and gardens in which generation
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after generation of dons and undergraduates had calmly
strolled and meditated. The restful peace of this fairest English
city had been rudely broken when Charles T had made it his
headquarters during the civil war between Rovalists and
Parliamentarians. In May, 1646, Charles was forced to flee
from the city in disguise. In 1649, the year in which he was be-
headed on a scaffold outside Whitehall, & young clergyman

aged thirty-three was appointed to the Savilian chair of ges

ometry at Oxford, despite the fact that he had signed a prqteéf,
known as the Remonstrance, against the king’s execittion.
His name was John Wallis, a Cambridge graduate ingnedicine,
who became a clergyman and supported Cromiwell’s Parlia-
mentarians in the civil war by deciphering Reyalist papers
that had been captured. He was rewarded ~Q)t eing appointed
to a parish in London. While there, hegrew more and more
interested in mathematics, attending. meetings of scientists
which a few years later grew into the'Royal Society of London.
So great was his mathematicglf’éibility that he was appointed
to the Oxford professorship-and remained at Oxford until his
death at the age of eightg~seven. He wrote many books on a
variety of subjects, \i{icluding logic, philosophy and mathe-
matics. One of tH® many mathematical books dealt with
Descartes’ geomét’r&, and for the first time set it forth in a
clear and simp'le’manner. His most famous book, however, was
called Apiffunetica Infimitorum, #The Arithmetic of Infinites,”
which Was published in 1656. In it, he made use of, and ex-
tended, the methods employed by Descartes and Cavalieri,
Ghite he found a meaning for fractional and negative ex-
ponents, although he did not write them as we write them to-

day; Newton was the first to employ our modern method.
. o

Wallis showed that {as we now write them) a% al, a2,

111
. . respectively represent 1, — —, o ; that x¥stands for
aa

the square root of x, x¥ for the cube root of x’, and so forth.

V4
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Both Cavalieri and French mathematicians had been able
to find the area lying between part of a parahola, the x-axis
and a y-ordinate such as is shown in the shaded part of Figure
84

Fig, 84

They-imfgined the shaded portion as being made up of an
inﬁniiie;ﬂumber of infinitely small rectangular strips, whose
su;ix'}gave the required area. We shall shortly see how Wallis

‘Q}'Sé:d this method, but made a great advance by introducing an

3 arithmetical concept of what is nowadays called a limit,

..\" %

Before we consider his actual method, we shalf observe how
he calculated the value of the ratio between the area of his
shaded figure and that of the rectangle on the same base as
that shaded figure and having its maximum height. As we shall
see, he found the ratio to he

P2 434424+ 4+m?
{m 4 Dm*
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where m stood for the number of rectangles into which he di- '
vided the shaded figure.
2

Thus, if m = 1, the ratio would be % , Or %, or <.

Itm = 2, theratio would be 1—+}~, or i
3@ 12
Iim = 3, theratio would be 1_&__—}—_9, or —. ()
5 U1 O

14+44-9+16 9
s6) 24 (D
Continuing in this way, it will be found that successive values
for m = SJ 6} 7...are %%3 %%: ‘}%: %%1 %%s .%@r and so on.
[1t will be seen that the numeratots of all these fractions form
an arithmetic progression whose first tetfin)is 3, and whose
cornmon difference is 2; their denominators;another arithmetic
progression whose first term is 6, ang{whose common difference

is 6.} o X

Now we can re-write ihese siccessive values of the ratio
between the two areas, asdllows.

Whenm = 1,ratio =\\% 14+ 3

Ifm = 4,the ratio would be

I

Whenm = 2,ratio™ 7 =3 + 1%
Whenm = 3,30 = 1% = ¥+ 1%
Whenm = dytatio = & = 3 + e

g S

When 1:11'\\——-“\5, ratio = ¥5

Whenih = 100, ratio = §§ = % + wio

L e B BN L B

3
henm = 10000, ratio = 20001 = 3+ LT
and so ob.

In cach case, the ratio is equal to § plus some fraction. The
successive fractional additions to this will be seen to have 1
for numerator and successive terms of the arithmetic progres-
sion 6, 12, 18, 24 . . . for denominator. So the greater the value
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‘taken for m, the smaller will be the value of the fractional addition
t0 3. By taking m sufficiently large, we can make the difference
between the ratio and § smaller than any small quantity any-
one may mention. Thus, if one asks, “Can you make the dif-
ference between the value of the ratio and ¥ less than

N\
! ?” the answer is “Certainly; by taking m =\15666,-

2\

10,000,000
AN
R i FrTr e & o
667.” “Can you make it less than 100,000,600:000 The

answer is “Certainly; by taking m = 16,6665666,667,” and so
on, indefinitely, LY

Wallis saw that by increasing the'valie of m enormously,
he could say that the value of AN

12+22+ 32_&{4}._{_ . '_}_mz
(i rF
was as near to j as he wished. Nowadays we say that § is the
limit to which the valie of this ratio approaches as m ap-
proaches an infinite vahue.

Bearing in mind the idea suggested by Figures 83, 84 and 85,
we can now gasily follow Wallis’ method for finding the shaded
area in Figure85.

Imagine-fhat the shaded rectangles have been placed on top
of unsi‘gafded rectangles, each of which is as large as the largest
sha@;'e\} rectangle. The shaded rectangles represent areas of

:ﬁ"ﬁ?, 3%, 4%, 5%, 67 square units respectively. The actual kind of
+ 'units employed is immaterial, since we are going to find a ratio,
m~ " but the areas must be in the above proportions and all the
\/ rectangles must have the same width, or x-value, so far as the
graph is concerned. The number of shaded rectangles must be
one less than the number of unshaded rectangles.

It will be seen that the ratio between the sum of the shaded

rectangles and that of the unshaded in Figure 85 is

1+4+9+16+25436 _ 91 13 <1+ 1) _

7(36) T os2 36 7\3 T3
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af
h

C

Frc. 85

124224324 ... 4 m
(m 4+ 1)m®

Tf we now suceessively increase the number of rectangles,

not only will this smaller fraction, 3, be whittled down by

cach successive increase, but the “steps” in the shaded portion

will approach more and more closely to the outline of the

or
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curve. How can we find the ratio between the shaded and un-
shaded rectangles when their number is enormously great?
Let us first find a general expression for the value of the ratio
when the number of the rectangles (m) is smalk

2
We saw thatifm = 1, thetatio = >, or et
6 6m ™\
ifm = 2, theratio = —5—, or m+l 13\:\
12 6 AN ¢
ifm = 3, theratio = —z,er ME;
' 18" ,6m

in fact, no matter what value is taken fo’i‘:}r;, the value of the
ratio can always be found by substitupihg that value of m in
2m -+ 1 x\ 9’

the formula A

X
"

Now this formula may be’;ji;’i'itten ag 20 + i) or : - _1_
' o 6m  6m 3 6m
It therefore follows t]zfd:‘ if m is enormously great, the valve of
: . | .
the fraction 6—\15 exceedingly small. So by taking m suf-
59
ficiently large) the shaded area OAB, as it approaches the
shape of th®area under the parabola, may be taken as equal to
one-thir@lhe arca of rectangle OABC. Its measurement can now
easilyybe given in square units.*
{The reader who has persevered so far is now in the happy

'.f';}osition of being able to discover for himself (thanks to a little

*

* Notice how this result enables us to obtain the same result as that obtained
by Archimedes for the area of the parabolic segment DOB, The area OBA = ¥
rectangle OABC. .. the arca COB = 24 rectangle OABC. Now, the parabola
is symmetrical, or “balanced” with respect to the axis OC, so area POC = area
COB. So the area of the parabolic segment DOB is twice area COB, ot %
rectangle OABC. If triangle DOB were drawn, its area would be cqual to Y%
rectangle EABD (compare Figure 79, page 243). In other words, triangle
DOB = rectangle OABC, It follows that the area of the parabolic segment
DOB = 44 the area of triangle DOR.
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aid from Archimedes, Kepler, Cavalieri, Descartes and Wallis Y
an essential step in the integral calculus.

The shaded part of Figure 86 shows the area covered by the
graph of y = 4 (which we might write as y = 4x®, since x*,
as we have just seen, is equal to 1) between the origin and an
ordinate erected x units from that origin.

Y {
~ % \
y=4 D
for, y==ix"} \
A 4 N
> X
X
) .if%’IG. 86
N

In this particulat) ihstance, the value of any ordinate )
will be 4. Now, iy graph, the value of any particular ordi-
nate is alwayg connected with the yalue of the point where it
cuts the 3:%5('15‘. The conneciion is given in the equation of the
graph. Inorder to show this connection in this particular case,
w&wfi]l‘ write y = 4x? instead of just ¥ = 4. No matter what
value x may have, x° is always equal to 1, 50 the value of any
ordinate, y, will in this case always be 4 times 1, or 4. We will
call “4x® the ordinate-funciion of x. Readers who are not
familiar with the term “function” may want to look it up again
on page 167.

Since the shaded figure is a rectangle, its area will be length
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times breadth, or x times 4, or 4x square units. This area we
will write in the somewhat peculiar form 4 4x%, for reasons
which will shortly become apparent. We will call this peculiar-
looking expression the area-function of x. By means of this
area-function we can find the area covered by the “curve” he-
tween the origin and any given point on the x-axis. Thus, if
the ordinate is at the point x = 3, the area will be iy (4) (5),
or 20 square units,; and so on.

The shaded part of Figure 87 shows the area covered by the

“ourve” of y = 4x (whlch might be written, as y = 4x1) he-
tween the origin and an ordmate erected\x ‘units from the

origin.

A\
y (O
4%
A 2
£ \'i‘" . Hﬁ‘ - x
Y X
\&~ &
xt\"’ -‘f
:“\".
Fic. 87

Here, the ordinate-function is 4x*. We want to find the areo-
Junction. It will be seen that the shaded area is no longer a
rectangle, but is a triangle. Now, the area of a triangle is half
its base times its height, so its area is 3x times y, which we may
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write as 3x times 4x, since no matter where the ordinate is
situated, the value of y is always 4 times that of the x-value
of the point where that ordinate cuts the horizontal axis. S0
the area is £ 4x?, which will be the areg-function in this case.
o the area covered from x = 0 to x = 5 will be 3(£(3)(5),
or 50 square units; the arca covered betweenx = 0andx =9
will be 162 square units, and so on.

The shaded part of Figure 88 shows the area covered by theg \‘\

graphof y = 4x? from the origin to the ordinate erected x units)

from the origin. Here, the ordinate function is4st, N
(O
y O
K \\"
p x\ -
S
% - /N A
s <
o) 42
N
<"
> 4 =X
o g 0 % X
:"\".
AN N b
N Fi1c. 88

We saw just now how Wallis found that this area could be
regarded as 1 that of the rectangle OXPY. Now, the area of
"~ this rectangle is xy, but we can put 4x* in ptace of y, since the
ordinate-function here tells us that any ordinate in this figure
is always equal to 4x?, x being the value of the point (here

N
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marked X) where the ordinate under consideration cuts the
x-axis. So the area of the rectangle is 4x%, consequently the
area-fumction of the shaded figure will be § 4x°. It we want to
find the shaded area up to the point x = 5, for instance, this
area-function tells us that it is 3 (4)(5)(5)(5), or 166% square
units,

Let us collect together the facts we have just discovefed:

When the ordinate- - & N

function was

The area-function.was
4\

7
<

- 140

4x1 \\% 4x?
00\\

4x? x 3 48

These rcsults suggest that there must be some law that ac-
counts for the “patters!’ of these area-functions. This law is
sometimes called “Wallis' Law.” The reader will doubtless
see how each areg*function can be built up from its ordinate-
function. He willthen be able to supply the area-functions con-
nected with(the ordinate-functions of the graphs of y = 4x°,
y = 4x*[f4his can be done, an essential step in the process of
intf{g{@ifm will have been mastered. [The answers arc given
1 rin the text.]

allis now went a step further and found what we now call

‘the area-function connected with the ordinate-function of the

graph of ¥ = p+/x, where p stands for some constant. [Wallis
did not use the word “function”; it was first used by Leibniz
in 1694, though not in its modern sense. It was first used as
we usc it today by John Bernoulli in 1718.]

The reader may care to see whether he can rcach the same
conclusions as those reached by Wallis when searching for the
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area-function connected with the ordinate function of y =
5x*, which is equivalent toy = 5+/x. [If he is a stranger to the
calculus, he may care to know that the two area-functions he
was asked to supply just now were} 4x* and $ 4x°.] After trying
his hand at finding the area-function connected with 'y = S5x¥
he can check his result from what follows.

y O
A A\ -

8 } p Fic. &9
xt\n'

&
Thg&ﬁided portion of Figure 89 shows the area covered by
thegraph of y = 5x from the origin to the ordinate erected X
»\}i;r}ifs from. the origin.
\J/ By Wallis’ Law it will be scen that the area-function will be
found as follows:

The fraction in the answe will be obtained by inverting the
improper fraction representing 1 more than the exponent of x
in the given ordinate-function. (Compare the three examples
given in the table above.)
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The new exponent of x will be 1 more than the exponent of
in the ordinate-function.

So the area-function will be % 5x%, This means that if the
area is bounded on the right by an ordinate at the point x = 4,
the area will be %(5)(8), since 4% = (22)% = 28 = &, So the
area would then be 26% square units. If x = 9, the area will be
found to be 90 square units. The reader who feels dowbtiul
about this area-function car verify it by turning Figdre 89
around until it looks like Figure 85. By. applying(the method
used in connection with that figure he will find-that the area
under the right-hand part of the curve (in‘its new position)
will be § (5x%)x, or 1 5x%. Since the rectaﬁ’g}e involved in this
solution will have an area of 5x¥, the atea of half the parabolic
segment (which we are finding in Eiglre 89) will be found, by
subtraction, to be § 5x, \ x\ '

Wallis extended his law so\that he could find the area-
function connected with van’brdinate-function that contained
any number of terms, (Thus, if the ordinate function were
xt-} 3x — 4, the aréa-function would be Ix®-4 x?~— 4x.
This meant thatChe could handle ordinate-functions like
(1~ x9?% or¢{t’~ x?? since he knew how to expand a bi-
nomial (pagf;\228) whose power, or czponent {outside the
parenth:cgié)“ was a positive whole number. Thus, (1 — x%)% =
1—;§2.+X4; (1 —x%=1—3x24 3x* — x5 and so on.

By 'applying his law, he could easily find the areas bounded

' yothe x-axis, the ordinate at the point x = 1 and the graphs of

NN y= {1 — 52)°[That is, y = 1]
4 y= (1 — 3! [Thatis,y = 1 — x¥
y=(1—-x
y={-x

and so on.
Now we saw on page 213 that the equation of a circle is
x* + y? = 1% where r is the radius, If r = 1, this equation be-
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comes %2 + y? = 1, which may be written as y* =1 — %,
orasy = (1 — X%

Wallis saw that if he could find the area-function connection
with the ordinate-function (1 — x2)%, he would be able to find
the area of a circle from his answer. Now, the area of a circle =
a2, so if r = 1, this area becomes , while the area of a semi-

circle will be g X

But here Wallis ran into a difficulty. We have seen thai:’bi\—“’
nomials which had a positive whole number for their p‘micpr‘, or
exponent, could be expanded. But nobody knew how 1o ex-
pand a binomial which had a fraction for its expo}iént. [This
problem we are considering led Newton to distover how to
expand certain binomials having fractional’:é}ponents.] Wallis
thought he could get his desired answer'by calculating the
area-functions of a series of curves, such as the four we have
listed above. Ti the reader willapply Wallis’ Law to the
various ordinate functions in ¢hat list and find the areas for
values from x = 0 to x = 1 he will get the following results:

Equétion Area
yeE @ — x)° 1
,y> 1 -y 3
oY= —xp 3
Oy =(01-x) 05

Now Wallis“argued that since the ordinate-function (1 — x%)¥

lies bg‘tgéen the ordinate-functions (1 — %% and 1 - x»,

he, gil,‘ght to be able to interpolate a value for its area-function
\'“sémewhere in between the areas 1 and %, basing his calcula-

tions on the “steps” in the Series of areas 1, %, 5, ¥y etc. He

did not, of course succeed in doing this exactly, but bis attempt

shows a remarkable “number-pattern.” Here it is:

r 22446688.....

7 13355799, ..
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Now twice the right-hand side gives successive valueg which
“close in” on the value of #. As it stands above, it only gives
2-9 . . . which i3 too small. If we place onc more term (10) on
the numerator, and one more term (9} on the denominator, we
get 3-3 . . ., which is too large. If we now place another 10
on the numerator and 11 on the denominator, we get 3 0,
which is still too small, but better than 2-9 . . . ; while I wp
place another pair of numbers in the fra.ction we get 3Dy . .
which is still too large. Compare this very interesting “pat-
tern” of numbers with the Greek pattern given'on page 234.
Wallis had found an entirely new way of “cléging in” on the
value of 7, which, like /2 ete. is “incommensirable.” He asked
a friend of his, Lord Brouncker, who {azer became the first
President of the Royal Society, to sce Whether he could find an
exact value for =. Naturally, LordBrouncker failed to do this.
but he produced the followmg extraordmary continued frac-

tion: . \
4 XY
Tr _—
1 NI
.z?'z\z_i_ 9
A\ 25
79N 24 49
A X :
&1
25 2+
O\ 2 4 ete.

"For centuries, mathematicians have studied and investi-
gated the propertics of . It took from 2200 B.c. to A.p. 1882,

\ /) justover four thousand years, to find out exactly what kind of
number it is. It is, of course, an irrational number, but it dif-

fers from irrationals like 4/2 in that it can never be the root of

an equation such as 7x% — 2x?4 3x% 4 9x 4 8 = 0. For this
reason, w is called a fronscendental number. Among the great
mathematicians who have studied the properties of » were



FORERUNNERS OF NEWTON 267

Archimedes, Ptolemy, Fibonacci, Vieta, Fermat, Huygens
(around 1670), Wallis, Newton, Leibniz, the Bernoullis
(around 1700), Euler (around 1750}, Lambert {(a German
mathematician, around 1750), Lagrange (around 1775) and
Lindemann (of the University of Munich, around 1875). Not
until 1882 did Lindemann prove beyond all doubt that = was
transcendental; thus he showed once and for all that no circle

can be “squared”—no circle can have its area found exactly(™\

The reader who wishes to pursue the subject of franscendentals
should read “The Transcendence of x,” in J. W. A. Xqﬂgﬁg’a
Monographs on Topics of M odern Mathematics. \

We shall now temporarily leave the story of\the develop-
ment of the integral calculus, to return to it as sb0n as we have
acen how the differential calculus was devgl‘o;}ed.

Refore we discuss this latter developurent it will help those
who ate not familiar with the calculu‘s}f we digress for a mo-
ment and consider another aspect.gh the ordinatefunctions of
graphs, while they are iresh in-Gitr minds. If the very simple
arguments developed in the next few paragraphs are grasped,
the underlying idea of hotlt the differential and the integral
calculus will becom clt:a‘r.

Suppose water isc}}owing steadily into a rectangular tank,
and that we measure the depth of the water at regular time-
Intervals froql:the moment the water is turned on. Since these
time-intervald are equal to each other, we can picture them as
marked\by equal lengths on a straight line. We will use the
x-axig¥or these equal time-intervals. If at the end of the first
tifné-interval (that is, at the point x = 1) we erect a per-
péendicular line representing the depth of the water at the end
of the first interval, another perpendicular at the point x = 2,
representing the depth at the end of the second time-interval,
and so on, we can draw a line touching the top of each per-
pendicular. This line will be a graph indicating the depth of
water at any time during the period under observation. The

QY
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perpendiculars will be a few of the innumerable ordinates of
this graph.

It is obvious that since the graph slopes upward from left to
right, it indicates ever-increasing values of the function.

y
/ AN
o 124 '\Q\
O
Ay=3 N
¢*¢
\ gl Q ."’:,\
A\
Ay=3 S
T ¢ ,\
> 6 FLAIR |12

\'\s,l s
O = 3
oV a1
AN Y
\\\ 0 1 2 3 4 X

\"4 Time intefvals
O [Each Ax=1]
) _ Fic. 90

3
N Further, since in this case the depth of water added during
each time-interval is the same, the rale at which the depth in-
creases will remain unchanged throughout the operation. This
Is indicated by the fact that the difference between the lengths
of any two successive and equally spaced ordinates is always
the same.
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[To avoid the constant repetition of the phrase “the dif-
ference between the lengths of any two successive ordinates”
we will use the shorthand sign Ay, the Greek letter D (deita)
standing for all but the last word in this phrase, the y indicat-
ing “ordinates.”” We shall also make use of the shorthand Ax
1o indicate “the difference between the lengths of any two suc-
cessive x-values measured along the x-axis.”]

We see that in Figure 90, each Ay has the same value. Since™),

the Ax values are cqual to each other, it follows that ¢the
figure may be likened to a flight of steps in which not qnly\é,re
the “treads” all equal to each other, but the “risers!’ gre’also
all equal to each other. Consequently a straight/plank could
be placed on the steps so as to touch the edgeol each step.
So, whenever the graph of a function isa sefaight line, it indi-
cates an unchenging slope reflecting gﬂ}unchanghg rate of
increase (or decrease) in the value of the function (a decrease
would, of course, be indicated by-& downward slope from left
to right). There is no need tocdraw a graph in order to find
whether the Ay values are equial to each other. This can easily
be discovered algebraicaily. Thus, to take the equation of the

graph in Figure 90,\(\‘--- '3x:
0 i 2 K] 4

Values of x:
Related values@fy: 0 3 6 9 12
Values of Ay» 3 3 3 3

Now.dontider a mathematical flight of steps which is not
quite & éasy to nmegotiate, since, although all the “sreads”
a}'e\'ﬂ’i'e same width (Ax), the “risers” donot a1l have the same
{Ay“value.

Although it is quicker to work algebraically, we shall in this
case draw the graph of y = x% To make the example realistic,
we shall suppose that 2 ball rolts down a rather rongh incline
from rest, and that the number of feet it has rolled at the end.
of x seconds is given by the equation y = % Our own observa-
tion has told us that provided there are no serious obstacles

Q
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in its path, the ball will gather speed as it rolls, Thus, in 1
second it rolls 1%, or 1 foot; in 2 seconds, 2%, or 4 feet; in 3
seconds, 3¢, or 9 feet, and so on.

No longer can we imagine a plank so placed that it touches
each step. The graph is part of a parabola. Since the Ay values

AN
y
A _ { &)
P 4 SV I . \..\a :
P :”"‘
L 4 .'\'
Ay=91 I &)
16 ——__'"“':"':\'S“_'_"
Ay=7 R\
.’J":‘; ) R
A% R = Y
/N » \\ -
Ay=b y
:"\\ Q
D | I
Y \Xy=3 P
oS Ay=1{ 1= >X
2NO 01 2 3 4 5
I
;"\'"
’\\m' Fic. 91
R\
,ﬁ\“\, " are not equal to each other, the rafe by which the distance y in-

\ }

creases is not constant. If, however, another graph were drawn
having equally-spaced ordinates representing the Ay values I,
3,3,7, and 9, “the difference between the lengths of any two
successive Ay values” {which impressive phrase we will indi-
cate in future by the symbol Asy, or “second difference-of-
ordinate-values”) will always be the same. In other words,
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this last graph will look like a flight of steps sloping upward
from left to right, on which we can imagine a plank so placed
as to touch each step. So this will indicate that the rale at
which the ball rolls down the slope increases uniformly. In
other words, it has the same constant acceleration. So speed 1s
connected with Ay in some way, acceleration with Azy, as we

shall see lafer. N\
All this can be seen quickly if the problem is treated alges,

braically. Thus, sincey = X3, A\

Values of x: 0 1 2 3 4 5.0 by

Related valuesofy: 0 1 4 9 16 A28 3

Values of Ay: 1 3 5 7T AN

Values of gy 2 2 2 AV

In this digression about ordinate values,we have jumped
out of the seventeenth century andymade use of modern
symbolism so that the non-mathematical reader may become
accustomed to thinking about “@ifferences in wvalues of suc-
cessive ordinates” of a curve~This lies at the root of the dif-
ferential calculus, whose pbféct is to find out facts connected
with the rate with whicha quantity changes in value. Pro-
vided we know—ot ganfind out—how far an object movesin a
given time, we can find not merely its average rate or speed for
any given pe::i\a&'bf time, which is a very simple matter, but
also its speed At any given instant, which is apparently not so
simple, a'mfatter. Consider, for instancs, the rolling ball in our
last example. During the first second it rolled 1 foot. So its
average speed during this period of +ime was 1 foot per second.

*Bl\lt t0 begin with, its speed was less than this, since 1t started
from rest. So at the end of the first second, its speed must
have been greater than 1 foot per second, otherwise it would
not have averaged this speed. 1f we take 2 hours to drive 60

miles, our average speed would be found by dividing the dis-
distance

tance by the time taken. Thus, average speed = —————-
time taken
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Obviously, our average speed would be 30 m. p-h., or & This
does not mean we were traveling at 30 m.p.h. from the instant
we started until we finished our journey. If we imagine a
journey of 60 miles over a perfectly straight level road with no
obstacles in our way such as traffic lights or other vehicles, we
can picture ourselves starting from rest and gently and uni-
formly accelerating throughout the whole journey so thaf we
complete it in 2 hours. Clearly, our speed would slowly rise
from 0 m.p.h. to 30 m.p.h. and would be cons1de.rab\ly more
than 30 m.p.h. at the end of the journey, if we wexe o average
30 m.p.h. throughout. "

In Figure 90, the average rate of mcreased}s fhe depth of the
water between the depths indicated at the points P and Q will
be increase in depth between P and Qo0 \N

\. ow, the increase in
time taken for this increase~

depth between P and Q is Ay f;he time taken is Ax. So the
average rate of increase in.depth between P and Q will be

Y 1t is dlear from Figur¢ 90 that in this particular problem,
- .

i_x is the same dunn\g each of the first, second, third and fourth

seconds. Thus\the rate of increase in the depth of the water
does not’gha.’nge throughout the operation depicted in this
graph, \ _
Y . Ay . .
‘,@ Figure 91, however, it will be seen that A successively
\‘g"reater and greater during the first, second, third, fourth and
fifth seconds of the ball’s path down the incline. The fact that
the ball travels a greater distance during each successive
second is another way of saying that its average speed during
successive periods of time becomes greater and greater. Thus,
between O and P its average speed was 1 foot per second,
between P and Q it was 3 feet per second, between Q and R it
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was 5 feet per second, between R and S it was 7 feet per
second, between S and T it was 9 feet per second. But at P its
speed was greater than 1 foot per second, at Q it was greater
than 3 feet per second, . . . at T it was greater than 9 feet per
second. The problem of finding the speed at points like these
can be solved with absurd ease by means of the differential
calcalus. We shall see how Newton solved this, and many
other problems, by its aid. O\

Tn our story of Wallis’ work we have been careful to qwifl’
speaking, as he did, of a figure “‘as if’* made up of “anJnfnite
number of parallel lines in arithmetic proportion.’fﬁ-leie, he
was following the example of Cavalieri. Wallis’ great contribu-
tions to the development of the calculus werehis development
of the arithmetic concept of a limif, andliis application of
analysis which enabled an area-function to be found from an
" ordinate function by the applicatiop’di‘é general algebraic law.

The seeds sown by Archimede§'were at last springing up;
to some, the new growihs seemeéd like dangerous weeds. But
by the skill and genius of two men, and the assistance of a few
others, they were to Ke\cultivated and developed into the
finest and most v&uéble crop that mathematicians have ever
harvested. 2N



CHAPTER VI

Newton

XS
NS ¢
“I do not know what I may appear to the wbﬁd but to
myself I scem to have been only like a bog playmg on the
seashore, and diverting myself in now; “a}rd then finding a
smoother pebble or a prettier shell<than ordinary, whllst
the great occan of truth lay all u{lﬁlscovered before me.”

W\ Brewster's Memoirs of Newlon.

N OCTOBER, 1661, a youth between eighteen and nineteen
years of age traveledvto ‘Cambridge and found his way to
Trinity College. The? pxevmus June, the Master of Trinity
had admitted him¢as a member of the great college founded
more than a ceptiiry previously by Henry VIIL On July 8th
he had been‘admitted as a student-member of the University
of Cambridge. Now he had “come up” for the October term
and wastdbout to commence his life there as an unknown
undei’gt‘aduate
\As he walked through the King’s Gateway, with its statue

. }f&‘ the royal founder of the college, he can little have dreamed
\ 'that there were rooms on one side of that gateway which,

centuries later, would proudly be shown to visitors as having
been occupied by him.

As he entered the courtyard with its statue that he was to
find was in memory of Thomas Neville, the Master of Trinity
from 1593 to 1613, and saw for the first time the college chapel
built in Queen Mary’s reign, he little could have dreamed that

274
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one day his own statue would be placed in that chapel, and that
one of the world’s greatest poets would describe that statue as
“The marble index of a mind forever
Voyaging through strange seas of thought alone.”

He would undoubtedly have been annoyed and embarrassed

bad he known that Pope was to rhapsodize extravagantly
#Nature and Nature’s laws lay hid in night: O
God said ‘Let Newton be!” and all was light.”¢%,

Never having read a book on mathematics, he mesh. def-
initely could not have conceived the possibility ’Lll):'i}f’ within
eight years of that October day he would be appointed a pro-
fessor of mathematics in the University ongai:'nbridge, and
that he would write a book on science and applicd mathematics
which, more than a century later, Wa’s,u}Be described by the
profound French mathematician Leptace (usually very sparing
in his tributes to others) as assurcdbf “a pre-eminence above
all other productions of humai genius.”

Had he been able to leektinto the future, it would have
seemed strange that a matt who had been appointed Savilian
Professor of Astromouty in the University of Oxford the
previous year should be about to change his profession and
become the be%\\mown of all English architects; it would
have seeme\d’,uhlikely that Christopher Wren, while busy de-
signing d.pew St. Paul's cathedral that was to take the place
of the~dkl one, to be destroyed in 1666 in the Great Fire of
LQ&(’}én, should find time to design a great new library for

. .,Ttinity College; it would have seemed still more unlikely than
N Jany of these apparently fantastic visions that in 1949 one of
' that library’s most treasured possessions would be his own
manuscripts on mathematics and science, subjects of which,

in October, 1661, he was entirely ignorant.
Isaac Newton was born on Christmas day 1642 (the year
of Galileo’s death, and the year when civil war broke out be-
tween Charles T and the English Parliament) in the little vil-



276 MAKERS OF MATHEMATICS

lage of Woolsthorpe, Lincolnshire, some six miles from the
town of Grantham. He never knew his father, for the latter, 2
small farmer with a reputation for extravagance, had died be-
fore his son was born. The hoy was so frail at birth that he was
not expected to live. Thus he was given his first of many op-
portunities of astonishing others. As in the case of all these
other opportunities, he seized on this first one to the fuli, living
to his eighty-fifth year, when he still had perfect v;smn and a
thick head of silvery hair—his hair turned prematlfrely pray
when he was thirty.

His childhood’s frailty prevented him from ]dmmg in the
rough and tumble of village schoolchildren, Instead, he amused
himself by making mechanical toys: litHe#working models of
such things as waterwheels and windmills, a tiny carriage
moved by its rider, and ingenioudly constructed kites. The
mechanical skill and ingenuity*he/thus developed were to be
very useful to him later in ll.fe when making practical experi-
ments in connection with lénses and the study of the propertzes
of light. The joy of creatmg things thus tasted early in life
never deserted himyhe passed from the creation of mechanical
objects to that of\mtellectual concepts. Thus it came about
that he never‘{glt the need to have others “amuse” and “enter-
tain” him. He prov1ded his own recreation in probing into the
mystenassof the universe: the only matters of lasting and ab-
SOIblng\mterest for an intellect such as his. In his search to find

answer to the riddle of the universe he became absorbed in
R }}1 osophy and theology to such an extent that he would turn

AN f"to the certainties of mathematics

‘. . . that held acquaintance with the stars
And wedded soul to soul in purest bond
Of reason, undisturbed by space or time,”
and find relief and recreation in them.
His interests were overwhelmingly intellectual; he never
married; he cared nothing for dress; meals would be preparffd
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for him and would be left untouched when his mind was
wrestling with the intricacies of some problem.

Fortunately, as we have seen, he was unlike Pascal in that
he ouigrew his childhood’s weakness, and until the last few
years of his long life he was able to endure the intense mental
and physical strain invelved in writing on the most profound
subjects for as many as eighteen or nineteen hours on end. Like(
Archimedes, he possessed the power of concentration to a xe-
markable degree. His mind would close on a problem tike &)
steel trap, and nothing was allowed to divert it fromits’goal.
Meals would be ignored, and, on geiting up in thefmotning he
would forget ta dress and would be found hours later sitting
in his bedroom oblivious to everything save the problem in
which he was absorbed. Although Natusg\bad been so lavish
in her mental equipment, he once came’near to ruining her
gifts by his neglect of food and his reluctance to spend precious
hours in sleep. In the Michaelmas Term 1684 he had given a
course of lectures at Cambridgeé on the laws of motion. By
1685 he had incorporated these lectures into what was to be the
first of three books whith were to constitute his world-famous
masterpiece the Prifivipia. This book gave the world his law of
universal gravitdtion, which, as Dr. F. J. Cajori sald in his
History of Mdthematics “envelops the name of Newton in a
halo of perpétual glory.”

The sé¢ond book was completed in the summer of 1685, and
the third in the incredibly short time (in view of its contenis)
of pine months. The years of intense concentration and labor

o ;ﬁwolved in the production of these great works undermined his
< “strength and some years later brought on what would now be

described as a near nervous breakdown. Fortunately he made
a complete recovery and the very next year after his illness he
showed that his powers were unimpaired by solving the prob-
lem of the brachistochrome {(brachistos; “chortest,” chronos,
“time™) or curve of quickest descent. This problem had been
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issued as a chailenge to other mathematicians by Johann
Bernoulli, who had coined the Greek word brachistochrone.
Newton received the problem on January 29, 1697, and gave
the solution (a cycloid) on January 30, 1697. Again, in 1716,
Leibniz issued an extremely difficult problem. Newton, aged
seventy-four, solved it in five hours. Nevertheless, after com-
pleting the Principia that was assured of “a pre-emitence
aboveallother productions of human genius” a distinct,change
took place in Newton. He produced very little ongmal mathe-
matical or scientific work, while, as we shall .see, his nature
seems to have changed. He allowed the cordial relationship
that had existed between himself and Leihniz, for example, to
degenerate into a shamefully distressing state of animosity
during all the years when, as Presi;ie;}t"of the Royal Society, a
word from him would have sawedsthe situation. Possibly his
illness had deeper effects than ‘those that appeared on the
surface. N

It is not surpnsmg ta learn that during the years when he
was exercising intensg*concentration on mathematical and
scientific mattersfig'was at times forgetful of everyday things.
On one occasmn, it is said, while leading his horse up a steep
hill, he tum\i his mind to some problem. Some considerable
time lates he was puzzled to find the bridle still in his hand, but
no horSgdtiached to it. On another occasion—one of the few
occasﬁ)hs when he entertained friends—he went from the room
f}\\fetch more wine for his guests. After a long and trying inter-
\val, his thirsty guests were driven to investigate their bost’s
prolonged absence. They found him absorbed in some problem
ot other. Without doubt, the thought of wine would bring to
Newton’s mind Kepler’s use of infinitesimals rather than the
qualities usually associated with the “vinous beverage.”

At the very beginning of his career he discovered that mathe-
maticians and scientists were quick to question and criticize

any departure from habitual practices. At first Newton took
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great pains to answer their criticisms with patience and
couricsy, and to try to clear up their misunderstandings of his
work. But as their criticisms continued, he became hyper-
censitive on the subject, and bitterly resented the hours—
wasted hours, in his opinion-—that were consumed in replying
to his eritics. On November 18, 1676, he wrote to Henry
Oldenburg, the Secretary of the Royal Society, with reference \
to 2 fresh batch of criticisms that had been sent to him by*a,
Mr. Lucas, Professor of Mathematics at Liége, Belgium.Jn the
course of his letter, Newton said, “I promised to send:.y}}u an
answer to Mr. Lucas this next Tuesday, but Ifind L shall'scarce
finish what I have designed, so as to get a copy. taken of it by
that time, and therefore I beg your patiencelarweek longer. 1
see I have made myself a slave to philosppiﬁr [science], but if I
get free of Mr, Lucas’s business, 1 will'resolutely bid adieu to
it eternally, excepting what I do fér)my private satisfaction,
or leave to come out after me; fdt-1 see a man must either re-
solve to put out nothing newydr to become 2 slave to defend
it.” Twelve ycars later, Hesreiterated his detestation of the
disputes aroused by Hew scientific discoveries. “Philosophy
[science] is such a {mﬁertinently litigious lady,” he remarked
in a letter to his g&d friend, the eminent astronomer Edmund
Halley, “thati@inan basasgood be engaged in lawsuits, ashave
to do with\ber.” Halley's reply, dated June 29th, shows the
tact andpatience with which he handled the sensitive genius.
He &, “«T am heartily sorry that in this matter, wherein all
'I,I{é.,r'ikind ought to acknowledge their obligations to you, you
£\ should meet with anything that should give you unguiet. . . .
'\ am sure that the Society [Royal Society] have a very great
satisfaction, in the honour you do them, by the dedication of
so worthy a treatise [the first two books of the Prircipial. Sir,
I must again beg you, nof to let your resentments run so high
as to deprive us of your third book.” The world has to thank
Halley, not only for bearing the cost of printing the Principia
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and for correcting all the proofs, but also for so gently and tact-
fuily urging Newton to complete his great work.

This reluctance on Newton’s part to publish his discoveries
led to a regrettable and acrimonious dispute as to whether
he or Leibniz invented the calculus. As we shall see, Newton
actually used his methods as early as 1665-6; in 1669 heCom-
municated an outline of them privately to Isaac Barrow, his
predecessor as Lucasian Professor of Mathematie$.a¢’ Cam-
bridge, but they were not made available to scholats generally
until 1693. Thus, nearly thirty years elapsed,before the world
outside Cambridge learned of his work in.$his connection. As
we shall see, this led to most unfortuhdté misunderstandings
on the part of the followers of Leibniz

Newton’s life falls into thregldistinct sections: the first
covers his boyhood in Lincolfishire; the second, his life at
Cambridge from 1661 to 1696 the third, his work as a highly
paid government official from 1696 to his death in 1729.

After attending twos small schools in hamlets close to
Woolsthorpe, ke waSsent, at the age of twelve, to the grammar
school at Gra;:i.lﬁm. In the sixteenth century, *“grammar
schools” had been founded in England with the object of pro-
viding an fnexpensive education based on the study of Latin
and th@\€lassics. Mathematics was seldom if ever taught in
themy?The grammar school at Grantham was not a boarding
sthiool; so arrangements were made for young Newton to
. }lc)\dge with a local druggist, or, as he would then be termed,

) ¢\ apothecary, named Clark. Newton later admitted that his

early days at Grantham school were far from industrious. He
stood low in his class, and, doubtless owing to his physical
frailty, he seems to have suffered from an inferiority complex
until the day when he was goaded into a fight with a bully.

Newton’s biographer, Sir David Brewster, says that Newton
- got the better of the fight, and, dragging the bully by the ears,
pushed his face against the wall. This story seems a little too
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good to be true, but there is no question that from this time
onward Newton’s work showed great and rapid improvement.
Brewster atéributes this sudden development of mental con-
centration to Newton’s determination to vanquish the bully in
class. Not only was Newton eventually successful in doing
this, but be rose to be head of the school.

When he was fifteen, however, his mother, who had re-
married in 1645 and had become a widow for the second tipie)
in 1656, withdrew him from the school, fecling that it wasitithe
he began to learn how to cultivate his father’s small 'fglri;ﬂ,’a.nd
thus become a farmer. Farming, however, did not7appeal to
the boy. Whenever his mother sent her servaiti(to: Grantham
to shop for her, Newton contrived to accorpany the servant,
and, as soon as ke reached the town, g0 .té:‘b[r. Clark’s house
and spend the precious hours thus spdtehed from farming in
reading M. Clark’s books. It would bevery interestingand in-
structive if we could know thg'ﬁﬂ’es of some of Mr. Clark’s
books. Unfortunately, we caplonly surmise that some of them
must have been of a scignfific nature and thus have aroused
the boy’s interest in subjects he would not have met at school.
Without this surmise 3¢ is difficult to imagine what led him to
take up the studf;}mathematics and science when he went 10
Cambridge.s &

When on tHe farm, he preferred to sit under a tree reading 4
book o ¢atving a model to preventing the sheep and cattle
from{3traying, while in later years he told a friend that on
Eriday, September 3, 1658, when a great tempest swept over

¢ “\England as Oliver Cromwell passed away, he occupied himself

in trying to measure the force of the gale by leaping, first with
the wind and then against it, and then comparing these
measurements with the distance he could jump on a calm day.
1t was activities such as these (when a farmer’s mind ought to
be occupied in protecting his stock and equiptnent) that caused
his mother to realize that he was unfitted for farming. For-

Q
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tunately for mankind, she had the good sense to send him back
to Grantham Grammar School, where he was prepared for
entrance to Cambridge University on the advice of his uncle,
the Reverend W. Ayscough, the rector of a neighboring parish,
who not only persuaded his sister to let him arrange for her
son’s entry into the college at Cambridge which he himgelf
had attended, but also lent him books, such as Sandetson’s
Logic, which would have to be studied when he went'mtb resi-
dence there. Thus it came about that, thanks tothe good
offices of a graduate of Trinity College, Newtox 'Was granted a
sizarship there, which meant that his mother would pay re-
duced fees.

Very few details have come down togs of his undergraduate
days at Cambridge. The best we can’do is to try and plece to-
gether some notes made by himaany years later.

In his first term, that is, between October and Christmas
1661, he went to the little: Vﬂ]agc of Stourbridge, near Cam-
bridge, in order to visit the fair that was held there every year,
at one time, the greatest fair in England. Here he bought a
book on the stars, But found he was unable to understand it on
account of his defotance of geometry. So he bought an English
edition of Etclid’s Elements. He found the contents so “self-
evident” (\to quote his own words) that he put aside the Ele-
ments asa’ “triffing book”! He thercfore got hold of a copy of
Dgat‘tes Geomeiry and, after a hard struggle, managed to
pidster it. Tt was unfortunate that he had no one to guide him

,fby advising him to read Wallis’ book on Descartes’ Geomelry,
* which set forth the subject much more clearly than had the

original, However, Descartes’ book was sufficient to open up
the fascination of mathematics to him, and we find references
in his notes to his having read some of Vieta’s works and also
Wallis’ Arithmetica Infinitorum and thus making the ac
quaintance of infinite series during the years 1663 and 1664.
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In 1664 he sat for a scholarship at Trinity, to which he was
elected on April 28th of that year, despite the fact that one of
his examiners, Dr. Barrow, the first occupant of the Lucasian
Chair of Mathematics, reported adversely on his knowledge
of Euclid’s Elemenis, a verdict which 1s not surprising, in view
of the extent of his acquaintance with the “trifling book.”
This led Newton to study the FElemenis with care, and thus
come to realize that the book was no trifling matter, as he hel)
supposed. He was later to make a masterly use of Eudid’s
geometry in order to give to the world his mathemafteal ex-
planation of universal gravitation. He had Mmself@éached his
conclusions by means of his own invention, the ¢aleulus; since,
however, he knew that other mathematiciang‘were ignorant
of his invention—and would doubtless dise objections to it
and thus deny the truth of conclusiongbased on it—he re-cast
his arguments in geometric form, as'we shall sec. Thus, Bar-
row’s criticism of the young candidate for a Trinity scholar-
ship was to bear good fruit in {he end.

Since Tsaac Barrow was.to play an important part in New-
ton’s life, we will digr‘es}for a moment and glance at this first
occupant, in 1663, t{f‘\thc mathematical professorship endowed
by Mr. Lucas in‘his will.

Barrow’s fafher was a London linen draper who sent his boy
to Charterhouse School. There he was so troublesome and so
fond offighting that his father is reported to have said that if it
pleq.s?ﬂ‘ God to take any of his children, he could best spare
Lsdac.

"\ “Aiter leaving Charterbouse. however, he applied himself so
well to the study of literature and science at Trinity College,
Cambridge, that he became a Fellow of the college.

Then followed several years of travel and adventure. While
on a voyage from Italy to Turkey his ship was attacked by
pirates, Barrow then found that his entirely unofficial activities
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at Charterhouse stood him in good stead, for he gave a very
good account of himself in the fight that ensued and that re-
sulted in driving off the intruders.

He remained in Constantinople some time, and became
interested in reading the works of the early Church Fathers.
On his return to England he was ordained, and in 1660 pyas
appointed to the Greek professorship at Cambridge. Two'years
later, he was chosen as Professor of Geometry af ‘Gresham
College, London, whose first Professor of Geomefry had been
Henry Briggs, the friend and helper of Napief, ™

In 1663 Barrow received two great hongrs:'he was the first
Fellow to be chosen by the newly fornied-Royal Society [To-
day, “F.R.S.” after a scientist’s nameXs an indication of the
highest distinction attainable by {a sclentist in England,
namely “Fellow of the Royal Soeiety.”]; and he was chosen
as the first Lucasian Professor 5f Mathematics at Cambridge.

Thus it came about that one of Newton’s examiners for his
scholarship in 1664 Wsaé‘llsaac Barrow, who thereby unknow-
ingly played a partdn securing for his lectures a student who
was to become the greatest mathematician England, if not the
world, has evief produced. By 1669 Barrow fully realized the
“unparalleleéd genius” of his pupil, to quote his own words,
and, onydéeiding to devote himself to the study of theology,
resigned-his mathematical professorship and was instrumental
ir&;@‘cﬁring the appointment of Newton as his successor. In
1672 Barrow becamec Master of Trinity College, and in 1673

pr A Vice-chancellor of the University.

Toreturn to Newton’s undergraduate days. Before the study
of mathematics was commenced, it was then customary at
Cambridge to read Sanderson’s Logic as a preliminary training
for the mind. We have seen how Newton’s uncle had given
him a copy of this work; so well had Newton studied and
grasped its contents that Benjamin Pulleyn, his tutor at Trin-
ity, excused his attendance at lectures on the book. While still
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an undergraduate, Newton began to nake careful observations
of the heavenly bodies. He himself remarks in his Optics that
“in the beginning of the year 1664, February 19th, at night, I
saw two such crowns [about the moon].” In January, 1665, he
took the degree of bachelor of arts but was later in that year
torced to leave Cambridge owing to the plague. In December,
1664, “the Plague of London” had commenced. The diarist
Samuel Pepys (1633-1703) who was Secretary to the Navyy)
or to give him his actual title, “Clerk of the Acts of the Navy,”
tells us that on June 7, 1665, he saw for the first time houses
marked with the—then—dread red cross and the wotds ‘‘Lord,
have mercy upon us.”” On September 4th, Pénys wrote, “I
have stayed in the city till above 7400 died in\one week and of
them about 6000 of the plague, and ]it}@.}oise heard day ot
night but tolling of bells.” As a precanfionary measure Trinity
College was closed during part of \1665 and part of 1666, by
which year the Great Fire of Lohdon had destroyed not only
the city but also the germss ofthe disease. While the college
was closed, Newton went/o Woolsthorpe,and thereit was that
he began io think abqut the fundamental principles of his
theory of gravita.tio\ﬁ\"

Tt was here, &tyWoolsthorpe, in 1666 that the well-known
legend of Néwton and the apple arose. Tradition holds that the
idea of g;aﬁtétion was suggested to Newton by the fall of an
apple,‘Qe}f:ainly, the supposed tree from which it fell was kept
stamliﬁg until a gale destroyed it in 1820. But the earth’s gravi-
tation was an accepted sdentific fact long before Newton's
{“\itne; his genius lay in developing the law of universal gravita-
tion. The most probable explanation of the rise of the legend is
that given by Professor S. Brodetsky in bis book Sir Isaac
Newton:

“The fall of the apple—if it was really responsible for
initiating in Newton's mind the train of thought that culmi-
nated in the discovery of the law of gravitation—did it in the
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foliowing manner, if one may venture to put into feeble words
the flash of Newton’s genius:

‘Why do the planets go round the sun? Why do they not
move in straight lines? Evidently there is a force pulling them
out of the straight-line path at every moment, and clearly

“this force is due to the sun. The moon goes round the earth
and does not go off on a straight line. This must be due to the
earth. Ah! An apple has just fallen to the ground;\’che\ea.rth
has pulled it down. How far up does the earth’s\influence ex-
tend? . . 7% :”w

lemg in the peaceful countryside where he had once feared
he would have to spend his life as a farmher, he invented his
“fluxional caleulus” which was to enable him to build up his
law of universal gravitation, and wWa¥'to give mathematicians
and scientists their most powepfud' weapon. In order that we
may follow the steps that led to-this epoch -marking invention,
we must go back and accompany him in imagination to the
lecture room of Isaac\Barrow Barrow’s contribution to the
development of the galculus lay in his extension and simplifica-
tion of Fermat's-method of drawing a tangent to a curve.
Fermat had explamed this methed in a letter to Roberval in
1629. It had been published in Herigone’s Cursus M athematicus
in 164400

To Amderstand this method, we must first glance at Fermat's
m\‘?{hod for finding the maximum or minimum values of certain

. fithth'lS Suppose y = 3x — x* i3 the equation of the curve

N ‘shown in Figure 92.

The value of the function “3x — x*” will, of course, change
as the value of x changes. For some value of x, this particular
function will have either a maximum or minimum value.
How could this be found? Fermat’s method was as follows:

Suppose the ordinate at A is x units from the origin. Then
the length of this ordinate, in terms of x, will be 3x — =%

* Reprinted by courtesy of Methuen & Co. Ltd.
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Now suppose there is another ordinate, at B, that is the
same length as the ordinate at A. We will suppose the ordinate
at B is b units further from the origin than the ordinate at A.
In other words, B will be (x -+ h) units from the origin. Now,
the equation of this curve,y = 3x — x2, tells us that the length

y
4 ) &
' \A Ko
\'*\a < \
£ &
x {h O
A B\ 5
(% +h)— K7,
N
Fro. 92 O\Y

of any ordinate is “3 times i};@f@’c:{ralue, minus the square of
that x-value.” So the lengthnof the ordinate at B will be given
by the function 3(x + bl (x + h)?, which can be simplified
to 3x + 3k — 3 —*ZX}‘;[\"‘“ h2. Now these two ordinates are

assumed to be equalsSo
3x £x* = 3x -+ 3h — %% — 2xh — h?
57 . 3h—2xh—h2=0
Now diidé throughout by h:
PN
\O ©3-2x—h=0

Now! s}ppose the two equal ordinates are moved so close to-
M\ge@hér that “h” approaches zero {Fermat said “let the added
\ Wuantity be taken as zero,” which doesn’t make sense].
Fermat would then say that 3 — 2x =0
L 3=2x
Lx= 1
[We should say that as h approaches zero, 3 — 2x approaches
zero, and x approaches its limit, 13]
Now a glance at Figure 92 will make it clear that as h becomes
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smaller and smaller, the two equal ordinates come closer and
closer together. Each approaches the same “limiting” value
when x = 11. Also, each becomes greater and greater as it
approaches its limiting value. So the greatest ordinate in
Figure 92 would be one drawn at the point where x = 13,
and its length can be found by putting x = 13 in the ordidate-
function 3x — %%, and consequently will be 3(13) — (1\2)2 or
4l —~ 2% or 2% 7\

So the maximum value of the ordinate- functlon 3x—x2

* will be 23. [If the reader cares to draw the graph ofy=xt—

3x, he will find he gets a curve that opens\upward instead of
downward; instead of rising to a maximih Value and then fali-
ing back to the x-axis, it sinks to a inimum value and then
rises back to the x-axis. It will }ae:\found that the minimum
value of the ordinate-function@®= 3x is —2%, and that this
occurs when x = 11.] R

Fermat now applied pirt of his method of “maxima and

-minima” to the problent of drawing a tangent at any given

point on a curve. He'did this by calculating the length of the
sublangent, or, \t}\ré length TS in Figure 93. '

»X

Fic. 93

We will not spend time discussing Fermat’s method but
will go straight to that used by Barrow, since the only differ-
ence between these methods was that Barrow not only made
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use of an increase, or increment, In the x-value, but also of an
increment in the y-value. Let us draw the graph of y =
3x — x?and then take two ordinates, AP and BQ. We will sup-
pose that the length of BQ is j units greater than the length of
AP, and that BQ is h units further from the origin than is AP.

S

f ¢y
/5 K\
§ w N/
) Zw
1 R
E'V .. ”h X
{4+ 8)—
PN
)
&M
\ Fig. 94

[Triangle P ,Rﬁé:known as “Barrow’s differential triangle”’]
Suppose{We wish to draw the tangent at P, and that we
know that the ordinate AP is 1 unit from the origin O.
gin QP and extend this line to meet the x-axis at S, It is
~cJedr that triangle SPA is similar to triangle PQR,
| L RQ_AP
PR SA
We must always bear in mind that the length of any ordinate
can be found provided we know its function (in terms of x,
where x indicates any horizontal distance from the origin),
and also its actual horizontal distance from that origin. Thus,
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since, in this problem, the ordinate-function is 3x — x2, the
length of the ordinate AP (whose x-value is §) will be
AP = 33) — @)
=1 -1
= i1 ’
Now take the other ordinate, BQ, whose x-value is h xiore
than the x-value of AP, that is to say, 3 + h), and\w}mse
length is j units more than the length of AP. O
We have already found that AP = 11; let us npw find the
length of BQ in terms of h. Since the x-value pf BOs & + h),
the ordinate-function 3x — x? tells us that(
BO= 3G+ 1) - (%—!—h)"
13 4+ 2h :h2
Now j = BQI: AP
=Y +2h — 1) — 1}

i

:m\—‘ 2h — h?
s — h?
\\the rati I 2h—h
..... h h
¢/ =2—h

{At thlS\PO]Jlt we shall depart from the language used by

Barg6w and other seventeenth-century mathematicians, in
ord'\r to avoid certain illogical statements made by them.]

STt will be seen that the closer to the point P we take the

\ pomt Q, the smaller does h become. Moreover, as Q approaches

P, the ratio 2 5 gets (in this figure) larger and 1arger in value, ap-

proaching 2 but never actually reaching 2. Again, as Q ap-
proaches P, the secant SPQ approaches nearer and nearer to
the position of the tangent at P. The secant never “becomes”
the tangent at P though it approaches it as closely as we wish.



NEWTON 291

The position of the tangent at P has been indicated in the
figure by 2 dotted line. While the secant is approaching the

. AP . RQ i
tangent, theratio — (which we saw was ¢ ual to —=,0r =) i
§ sa ¢ qual 0 psor ) 38
at the same time approaching nearer and nearet to the value of

. AP . s .
the ratio A Here we have a geometric illustration of the &\

algebraic process that showed us that the ratio 211 approp.gﬁ‘&;\

but never reaches 2 in value as h is made smaller and smaller.

P. %9
The value of the ratio % is the exact {not a.ppr,ox}mateﬁ value

of the limit which the ratio i approa\eb%{ namely, 2. So
AP AV
TA = 2. In other words, the subtangent TA is, in this example,
half the length of the (knownj &din&te AP. It is now a simple
matter to find the point "T‘éird draw the tangent TP.

The importance of this method of Barrow’s, so far as New-
ton’s work was concernied, did not He so much in its usefulness
in drawing the ta.n%ent, as in the method employed for finding

"\ . R i
{as we now shéuld say] the limit to which the ratio §§ oT -J}:—l)

appro%:th'{;a as PR (or h) approached zero. This Hes at the very
root Ot the method of differentiation, so we will work 2 similar
'pgb,t'}lem in more general terms, by which is meant that‘ il-l-
~\stead of taking the distance of the ordinate AP from the origin
N\ as } unit, we shall call that distance “x,” which can stand for
any definite value. [Again, we shall use modern language and
concepts, but the method 1s, 1n its essentials, that used by
Newton in building up his “fuxional calculus.”
Using Figure 94, but calling OA “x units” instead of } unit,

we get, from the ordinate-function 3x — x2,
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AP = 3x — x?
BQ = 3(x -+ h) ~ (x + h)?
=3x+ 3h — x*— 2xh — k?
.jl=BQ — AP] = 3h — 2xh — h?
o 3h — 2xh — W
“h  r
= 3~2x—h

N
iz i:\
It follows that as h approaches zero, the ratio:i\: approaches
3 - 2x. R s
We have now “differentiated” the funttion 3x — x? and
have obtained its *““derived function,’.gr¥derivative’” 3 — 2.
Let us see if we can find a meaning fobythis “derivative” of the
original ordinate function 3x — :Q’s
If the reader will glance ba,ck Jat Figure 90 on page 268 he
will see four triangles, each@f‘whlch is exactly the same shape
and size as the one marked PQR. Attaching the meanings we
have just connected wﬁ:h i and h, we can label PR as h, and
RQ as j. P
AN j
Now wha{ {Xa):tly would ﬁ signify in Figure 90 (reproduced
in Figure®95)7
O

INY
:"\s.
v/

F1c. 95
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“j* represents the increase in the depth of water in a tank
during a time-interval h. As we have seen, an average rate
of speed is found by dividing the distance gone by the time

taken. So l]_l gives the average raie at which the depth of water

was increasing during the time-interval h. We saw, how-
ever, on page 271 that the awerage rate of increase during
any interval was not the same as the rate at the beginning er’)
end of that interval, uniess no change in rate occurred. When-

ever the rate of growth increases, l]; represents the'@érdée rate
) \

, S\
of growth. This cannot in such a case be equal\to the rate at
which an ordinate is growing at the beginning or end of any
interval of time (or whatever the x-axistmiay represent). It is

true that 111 will be approvimately efual to such instantaneous

rate if both j and h are very sma.]I (not “infinitesimals””). The
exact instantaneous rate of grgiwfth, however, is not the value of

the ratio -J};; it is the lifit which the value of that ratio ap-
: ne

proaches; This “ljﬁk’iﬂg value’ is not an approximate volue; it is
an exact value,giving the rate of growth of the ordinate situated
x-units frond the origin at the instant that x-value began to in-
crease to\'('x\—!- h).
Tl{is\\}‘ihstantaneous rate” of increase in the length of an
ordihdte can also be represented geometrically as the exact
~§lope of the tangent at the point where the curve is cut by the
\ordinate which is x-units from the origin.
Let us see what mathematicians mean by “slope.”
Tn mathematics, the slope of a straight line is measured by

3

perpendicular rise _}

the ratio ot b in any of the triangles in Fig-

horizontal length
ure 96.
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In the case of a straight line, the slope never changes, so
there can be no “rate of increase in slope.” The greater the
slope of a line, the more upright will that line be; the smaller
the slope of a line, the more it approaches the horizontal, as

Q
N\
¢ Oy
'\
) <"}S
Q &
i \ N’
, :t\\o/
‘\ g

i O Q

3 j Q

Fic. 96

will be seel{ i Figure 96. The nearer a line is to the horizontal,

the sn@ller is the value ofl:l1 When a line is horizontal, its slope

\ls\ln the case of a curve, the slope continually changes. We
& “\ saw that the average rate of increase between P and Q in Figure

i.

94 was —}J-l ; we have now seen that L is also the measure of the
slope of PQ. We also saw that the limit which ;—1 approached was

. AP . ) :
the ratio A’ which we now see is the slope of the tangent at P-
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So the instantaneous rate at P is shewn by the slope of the
tangent at that point. It follows that the slope of a curve at
any point on that curve is shown by the slope of the tangent at
that point; the average slope between any two points on the
curve by the slope of the line joining those two points. There
is no need to draw the tangent to find the instantaneous rate,
or the chord to find the average rate. Both of these, as we have
seen, can easily be calculated algebraically. Ko
Thus, in the problem illustrated in Figure 91, page 270 the
equation was y = x> We need not draw any figure, ut ‘can
suppose that APisan ordinate which is x-units from the'origin,
BQ an ordinate which is {(x+ h) units fighd the origin,

and that BQ — AP = j units. O
AP = x* \\ g
BQ = (x+ h)?
= x*-+ 2xh + b7
~jl=BQ — AP] = 2xh 4~b?
) I _ 2xh2+,:he'“
T & b
-‘;:,2'22\-]" h

Soash approaches}éro, 111 approaches 2x. In other words, al-

though the Tté4with which the ball rolls down the incline is

constant’;y\'&énging, we can find exactly what that rate was

at any-mement. Thus, at the end of 3 seconds, the rate was

2(3), 0k 6 feet per second; at the end of 4 seconds it was 8 feet
_pétisecond, and so on.

. We found (page 292) that the derivative of the ordinate
function 3x — x* was 3 — 2x. This tells us that the rate with
which the function 3x — X? increases at any point (that is to
say, the rate with which the length of the original ordinate at
any point increases) is given by the derivative 3 — 2x. So from
this derivative we can say that after 1 seconds, the value of the
function was growing at 3 — 2(2), or 2} units of lengih per
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unit of time; at the end of % second, at 3 — 2(3), or 2 such
units,

Since a clear grasp of the meaning of a derivative is essential
for an understanding of the calculus, we will consider yet an-
other example. Suppose a ball is thrown vertically into the
air so that its height above the thrower’s hand, y feet,.iggiven
by the equation y = 40x — 16x%, where x stands, \for the
number of seconds that have elapsed since it left the thrower’s
hand. Suppose we wish to find the speed of the'ball at any
instant during its flight up and down, SO _

-Suppose AP is an ordinate of the curvedhat would result if
we drew the graph of y = 40x — 16x%and let AP be x-units
from the origin. Let BQ be anothergrdinate, (x + k) units
from the origin. Since the ordinafe-function is 40x — 1657

AP = 40x — 16x '
BQ = 40(x3-h) — 16(x 4 h)?
= 408 40h — 16x* — 32xh — 16

~j[=BQ— AP] =\ 40h — 32xh — 16k
' .~ 40h — 32xh — 16h?
,s"':?h h
XN =40 — 32x — 16h

~ ash agprdaches zero, l%l approaches 40 — 32x. So the deriva-

tivg\o:MOx — 16x is 40 — 32x. [The stranger to the calculus
v@lrﬁnd it now pays to pause a moment and see whether he

g \¢an find any apparent inverse connection here with the law
() " discovered by Wallis, discussed on page 262.]

We shall see mote clearly the connection between a deriva-
tive and its-original function if we draw up 2 table, showing
various values of each; at the end of 0,1,%. . . seconds.

The meaning of the values of the ordinate-function will be
obvious; they tell us that the ball’s height above the thrower’s
band increased for 11 seconds, at which moment the ball
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Values of ordi-|  Values of
) nate-function | derivative,
in seconds: | 4ox — 1622 | 40— 32x:

Valuesof 3,

0 0 40
i 9 32 A
N K
H 16 2
2 21 16, LY
1 24 N
—
13 25 N 0
11 TN -8
3 o2 —16
2 KT 16 —24
N 9 —32
xt\"'
@ ) _
A2 0 40

redclied its greatest height, 25 feet. The height above the

fower’s hand then began to decrease until, 25 seconds after
it was thrown into the air, it arrived back at its starting pomnt.

Knowing that a derivative tells us the rate of increase In
the values of the ordinates at any moment, we see that the
thrower imparted a speed, or rate, of 40 feet per second to the
ball. At the end of } second, this speed had been reduced to 32
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feet per second; at the end of £ second, to 24 feet per second,
and so on. At the instant when the ball had attained its
greatest height, namely, after 13 seconds, there was no speed
at all. The ball having lost its upward speed now began to re-
turn toward the earth, so the speed is marked with negative
signs.

If @ derivative is positive, it indicales that the value of the ardz-
nate of the original function af thal point is incriasing whenever
a derivative is negative, it indicales that the volue of vhe original
ordinate af that poini is decreasing. So by observiiig the sign of
the derivative at any point, we may tell w"bgtiﬁcr the value of
the original function is increasing or de¢réasing at that point.
This procedure is of great importance, since it enables us to
find whether certain values of a Q.:mction are maximum or
minimum values. Let us draw tHe ‘graph of y = 40x — 16x?,
and also that of its derzvatlve which we will call y, =
40 — 32x. [See Figure 97.J 0%

Notice the following peints:

(1) In Graph A,;xké'y values increase during the period

0 sec. to 1j-ec; they decrease from 1% sec. to 23 sec.
(2) In Grap.h'\'B; v1 values are posiiive {above the x-axis)
from \sec. to 1} sec.; negative (below the x-axis) from
1.8¢c. to 23 scc.

(3) Au-Graph A, the maximum value of y is reached when

(x= 1 raph i when

% x - 11 In Graph B, the value of y, is zero

(4) Ii the tangent were drawn at the maximum point on

Graph A, it would be horizontal. In other words, when

= 1%, its slope would be 0, as we saw on page 294

Notice how this fits in with Graph B, the graph of the

“rate” (= slope of tangent at any point on Graph A).
When x = 1, v, = 0.

The azbove suggests the following procedure for finding
maximum and minimum values of a function of x. Suppose
the function isy = x®* — x. :
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satisfy the equation 3x2 — 1 = 0. namely, the valueg
x=-577%

*Since 3x2 = 1 ., x2 =

Wl -
M

(2) We have found that there may be maximum or ntinj-
mum values of x* — x at the points where x = 4§97 or

x = —577. We now see whether the derivatiwlﬁx’ -1
changes from + to —, or from. - to -+ ’a's,\x increases
through these values, Thus: N

Ifx=-53%—1=—25]

2 O | _
fx=-632—1= -1--08J'3X 7 I"changes from

fo+-
[slope of graph of original functi@i%ﬁanges from negative to

positive] \

Ifx = —6,3x2 — | 308

.\ 2 f
ifx= —5, 3 == ___,25;33 1 changes from

—+ to —

[slope of graph of ofiginal function changes from positive to
negative} RS
Since a positive slope {(upward from leit to right) indi-
catesincreasing values of y (here, x* — x), and a negative
stope {downward from left 1o right) indicates decreasing
dalues of ¥, we see that there is a maximum value of -
\;3 = X at the point where x = —'577, and 2 minimum
% value where x = +-577.

AU this will be seen indicated in Figure 98, which shows the
\

S, 'graphs ofy = x%— xand yie= 3x2— 1.

Perhaps some reader is asking “What is the value of all.
this?” A complete answer would involve a survey of countless
problems connected with science, engineering and everyday
life. Even the mere nodding acquaintance we have made with
the calcutus will enable us to solve many problems such, for
example, as one raised by the Post Office regulation regarding
the size of parcels that may be sent through the post. “What
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Waximum
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‘ 4
1 1 _'..r_x t“\
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are the dimensions of a box with a square end which will con-
tain the largest possible volume and still comply with 'the regu-
lation that “The size of parcels must not exceed 72 inches In
tength and girth combined’?”
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Suppose each edge of the square end is x inches long.
. length of box = 72 — 4x
". volume of box == x¥72 — 4x)

= 72x2% — 4x3
It will be found that the derivative of 72x® — 4x3 is 144x —
12x2, If 144%x — 12x2 = ( "\
X == 12 N

¢\

The value of x = 12 may give a maximum OL.& Tinimum
value for the function 72x® — 4x3. If we putix*== 11 in the
derivative 144x — 12x* we get a positive,%alte; if we put
X = 13, we get a negative value. So x £ 2 gives the maxi-
mum value for the function 72x2 — 4x3,er the function which
represents the volume. So to send\ad parcel containing the
largest possible volume through “the post, its dimensions
should be 12 in. by 12 in. by"24 in. The reader may care to
find the largest parcel allogied in the U.S.A., where girth and
length combined mugh Wbt exceed 100 inches. {Answer:
16 in. by 162 in. byn33} in.)

Having, it is hoped, suggested the value of even the slight
knowledge of t{h(}calculus we have gained in this chapter, let
us now disco\v'tci‘ an extremely easy mechanical rule whereby
all the algebraic work we have so far used for finding the
derivatiVe of a function may be avoided, and the result writ-
ten down at sight.

T T8 the reader has not already discovered this rule for him-
.;'s%f, he should differentiate the following functions and then
'.\n’f" compare each derivative with its original function.

N/ Original function (y = . . ) Derivative (3 = . . )
1. x* 5
2. % ?
3. 3x2 ?
4, 5x? )
3. 7x? ?
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6. 3z% — x* ?
7. 5 ?
8. x*+ 3z 4 8x ?
9, 32+ 9 : ?
[Compare this answer with the
answer to Number 3]
10. 5z% - 27 ?
[Compare with Number 4]\,
11, x* 4+ 64 ? NN
[Compare with Nqn;‘g{)éi' 2}
12, 32— x*+4+ 19 ' P ON ?

[Compare with Number 6]
[The answers are: (1) 2x; (2) 3x%; (3) 6x; (4) 10x; (SP21x%; (6} 6x —
3x2; (7) 5[= 5x; (8) 4x* + 6x + 5; (9) Sameas (3); (10) Same
as (4); (11) Same as (2); (12) Same as {6).] { ©

Just in case anyone has not discovered ‘the mechanical rule,
here it is: R\

“Multiply each variable in theloriginal function by the ex-
ponent of that variable (ini2ll our examples, the variable
was x); then reduce the gkponent of the variable by 1.”

Or, in general, “If 3(="x», then the derivative of this func-
tion of x will be nx®= 1"

Tn other words\If the graph of y = x*is drawn, copnecting
values of y anthx, then the slope of the curve at any point will be
given by,.thé“formula nxs — 1, where x is the abscissa of the
point inquestion.”

Ow\ib put it in yet another way, “Ify = x*isa formula for

..gifﬁlg the value of the ordinate of a certain curve, then ke
zdte at which the value of an ordinate situaled % wnits from the
origin is increasing will be given by the formula nx»~ 1"

Tt will be seen that if the derivative found in any of the first
cight examples above is taken as a starting point, then, by
the application of Wallis’ Law (page 262) the original function
can be obtained. In other words, i each of these eight cases,
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the original function is a formula for giving the area under g
curve obtained from the derived function, and bounded by
that curve, the x-axis and an ordinate situated x units from the
origin. If the graph of, say, 3x? were drawn , the formula for the
area under this curve between the origin and the ordinate x
units from that origin would be 1 3x*, or the original fumction
x° from which the derivative 3x? was originally obtained, [We
shall later see the connection between the value of arCordinate
and the area under a curve: one of the most rémarkable and
interesting facts disclosed by the caleulus.] ™
The reader may have heen: wondering ‘why - the last four
derivatives found in Numbers 9-12.abdve were exactly the
same as the dertvatives found prexqpﬂqusly in (3), (4), (2), and
(6) respectively. The explanatiéniis simple. The derivative
tells us the slope of the curve Tepresenting the function from
which it is derived. It does nottell us the position of that curve
~with respect to the axes, {Take the simple example of the three
“curves” (here straight lines) shown in Figure 67 (page 213).
Obviously, each has the same slope, although each represents
a different function, namely, the functions 2x + 3, 2x, and
2x — 3. Sin¢elthe derivative of each of these functions simply
tells us ahout the sloge of the curve representing that function
(or, in\ofher words, the rate at which the value of the function
is inefedsing at any given point) each of these derivatives will
¢ the same, namely, 2 (or 2x%). So the graph of each pair of
Qunctions in Numbers ¢ and 3; 10 and 4; 11 and 2; 12 and 6,

~\*above, will have the same stope formula but will be differently

m\J
\ ™

situated with respect to the axes,

By applying Wallis’ Law, we can obtain an original function
from its derived function even in the case of Numbers 9-12
above, provided we allow for ihe possibility of an additional term
in the function so obtained. This is done by adding some con-
stant “c,”” where “¢” may stand for any positive or negative
number, or for zero. Thus:
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Derived function Original function
6x — 3x? -4

Tt is true that the derivative of 3x? — x*is 6x — 327, but this
last expression is also the derivative of innumerable other
functions such as 3x* — x®+ 4, or 3x* —x* — 7, and so on
ad infinitum. The effect of this constant term is simply to
raise or lower the graph of 3x2 — x® with respect to the x-axis.
This will be seen clearly in Figure 67: the graph of the function,
2x + 3 is 3 units higher up the y-axis than is the graph ofjthe
function 2x, while the graph of the function 2x — 3 is.3 units
lower down the y-axis than is the graph of the fnction 2x.
The reader has now discovered how to work(“ihtegration,”
or the reverse process to “differentiation.” We shall return to
this topic later, when we have talked a']ﬁﬂe about Leibniz.
But all this, and very much more, Wa:sg\worked out by Isaac
Newton within four, or at most fiyé.years from the day when
he read his first mathematics hook. Although we have neces-
sarily only glanced at the surfdce of the subject, the reader
shotld be able to see, at léast vaguely, that here Newton had
developed a tool with&hich to tackle the complex and difh-
cult mathematics;éonnected with the curves traced out by
moving heavenlc)s(\bodies, the areas connected with those
curves, andso Torh. From “the beginning of the year 1664,
February,18th” Newton was observing the beavens, as we saw.
He foundfre must have some powerful mathematical tool at his
dispgsal if he was to find an explanation for Kepler’s laws,
W\hit:h we discussed in Chapter VI. So he developed the
o\ ¥ealculus” which did for the “mathematics of motion and
"growth” what Descartes’ Geometry had done for the geometry
of the Greeks. Like Descartes, he built on ibe foundations laid
by others, and produced a generalized, far-reaching branch of
mathematics, whose tremendous consequences he could little

have foreseen.
Because Fermat was the first mathematician to use these
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methods, he has sometimes been hailed as the inventor of the
calculus. This was the view of no less a mathematician than
Laplace, whose opinion’ of Newton’s Principia was quoted
early in this chapter. It has, however, been pointed out that
Fermat only applied his methods to a few particular cases;
Newton drew up a system of rules that could be applied sy
function. When Newton said that he “had stood on the shoul-
ders of giants” he was doubtless referring to men\liké Des-
cartes, Fermat, Wallis and Barrow, so far as his dEVeI()pment
of the calculus was concerned, and to sc1em:ists like Galileo
and Kepler in connection with his work ongrawtatlon

Not until 1736 was Newton’s Metipd of Fluxions made
known to the general public, in a trapglation of his manuscripts
made by J. Colson. From this hook e find that Newton con-
ceived of a line as being generdted by a moving point. So he
thought of a line as being ay%flowing quantity,” and called it
the fluent. The velocitys mfh which the line “fowed” was
called by him its Sluxion. ‘[Much confusion arose during the
century that followed Newton's death by another interpreta-
tion of “fluxion ”].\The “Infinitely small length” by which a
fluent mcreashd\ in an “infinitely small time” was called by
Newton thé moment of the fluent. He designated the fluxion
of x by the’symbol %, and when the fluxion x was “infinitely
small{?\tie would represent the moment of the fluent by the
squbol x0. Thus, if he were dealing with two fluents, x and ¥,

. ﬁrhlch were connected by the equation y = 3x — x*, he would

~substitute x -+ xo for x, and y 4 yo for y in the equation

3

x—xt—y=0,
[Contrast our present methods: we do not speak of “in
finitesimals” and we do not introduce the idea of a “lumt”
until the final stage of our work.]
This would give him

3x 4 3x0 — x® — 2x(%0) ~ (x0)! —y— yo = 0
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Ignoring (xo)® as negligible, and subtracting the original equa-
tion 3x — x2 — y = 0, he would get
3x0 — 2x(x0) —yo =0
Soro=3—2x
X0
which is the same resulf as that obtained by our modern pro-
cedure. The important point is that in this first stage in the
development of the calculus, Newton made use of the essential \.J)
step in Fermat’s method, handed down to him by Barréw,
namely, that if an ordinate increased in length by j unifsiithe
average rale of increase in its length im thus passing frg&_d point &
units from the origin to a point (x + k) unils front theorigin was
j _ difference in lengths of ordinate {in téxrs of £)
h | h R4 |
This is still the essential first step foranyone who wishes to
learn the caleulus properly (pot metely learn to apply a few
mechanical rules without undesstanding the meaning of a
derivative, etc.). Unfortunatelys, most texthooks obscure the
simplicity of the ideas involwed by using shorthand syrabolism
before the student hagig?aéped what the thing is all about.
Such symbolism is esgenitial if the calculus is to be applied
and extended; it oakes the work of those who understand it
very much sim{ijlei‘; since it suggests ideas and processes in a
concise angi'.bbhcentrated form. The fact remains, however,
that for’bggﬁiners, the symbolism is often a stumbling block.
One ofithe greatest teachers of nathematics England has ever
had¥vas Professor T. P. Nunn (later Sir T. P. Nunn), Pro-
\{&3801‘ of Mathematics at London University some twenty-five
years ago. He once said that the symbols used in the calculus
“have been known to so many students only as hostile stand-
ards floating above an impregnable citadel.” (The Teaching of
Algebra, page 21.)
The beginner should realize that the symbolism is not really
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as awe-inspiring as it looks at first sight. Thus, let us look at
the apparently terrifying equation
im &Y _ g He+ Ax) — 1)
Ax '

Az —o, Ax—0
Ax

All this says is that the limit which the ratio we calledi ap-

proaches is to be found by finding the limit which“tlie ratio

difference in lengths of ordinates in terms of x 7~
T approaches.

The stranger to the calculus has already)met the symbols
Ay and Ax; they were purposely introdficed in Chapter VI in
order to accustom him to them, despite the disturbance in
chronological sequence then caused by the introduction of
these modern symbols. In that{chapter, Ay stood for the di-
ference in lengths of two ogdiﬁaltes, while Ax stood for the dif-
ference between their x-valtes. These two symbols are used
with the same meaning§in the calculus, only we think of them
as “increments” rather than as “difierences.” Thus, Ay is a
symbol for “the inerement, whatever it may be, in the length
of an ordin té\x‘ ¥ that is brought about by an increment Ax
in the ordin;’s x-value.” Ax and Ay are both {o be regarded
as deﬁx;i(cé finite guantities. We can think of Ax as “any hori-
zontalstep to the right of a point on the curve”; Ay as “what-

~gvexstep is then necessary in order to reach the curve.” If the
,\§"step is upward, it will be positive; if downward, negative.
" Figure 99 shows that when Ay is negative, the slope will be
negative, indicating that the value of the function (or length
of erdinate) is decreasing. Both possibilities indicated in Figure
99 will be included in an algebraic solution provided the length
of the left-hand ordinate is always subtracted from the length
of the right-hand ordinate (both expressed in terms of x).
The meaning of the shorthand “,m » is obviously “the

—a

limit which [whatever follows] approaches as Ax approaches 0.”
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Now consider the {raction, or rq.};ié’, on the right-hand side:
{c 4+ Ax) = £(c)
A
Here we find the synibolism for “function.” We briefly
glanced at this on page'168, when we saw that the expression
3z — x2, for example, being a function of x, might be indicated
briefly as “f(x) ,”{i’é Being understood that “” is simply a short-
hand symbol, for “fyunction,” just as A Is simply 2 shorthand
symbol for“frcrement.” Further, the value of the function of x
we areL sidering at any moment when & =, 563, 2, can be
indicdted by «f(2).”” Thus, if our function were 3x — X%,
“42)” would indicate 3(2) — (@) or 6—4, or %5 “§(3)"
ould indicate 3(3) — (3)% or 0; “f(c)” would indicate
3(0) — (0% “i{c+ Ax)” would indicate 3(c+ Ax) —
(c + Ax)2,
So the right-hand side of the equation merely indicates the
rati difierence between ordinates
"0 —_— - g
related increase in value of X
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So the equation

L S flc 4+ Ax) — f(c)
is really a friendly sheep in wolf’s clothing. Tt simply means
“the limit which the ratio befween the y-tncrement and the x-in-
crement approaches is to be found by taking the limit/which
the vatio betweer the ordinate-increment (in terms of &) .and the

a-increment approaches.” AN
While attending Barrow’s lectures in 1664, ‘Newton had
learned how to make use of Barrow’s “difiérential triangle,”
and, while at Woolsthorpe during the plé.g‘u’e period, he used
this as his starting point in developing.his fluxional calculus.
Later, be was to apply this new “miathematics of motion and
growth” in order to find the Jodgsought explanation of the
laws concerning the movements of heavenly bodies that had
been empirically discovered\by Kepler. There is reason to be-
lieve that Newton had glready in this period (1665-1666)
started out on this quest, although his time was then largely
occupied with studying the composition of light and with
practical experimients with Ienses and prisms. Not content
with all theSe activities, he commenced to study chemistry, a
subject in(which he retained a keen interest all his life, and
which wes'to prove of practical value to him when, toward the

endof the century, he was appointed, first as Warden, then

3{:1\‘/1’aster of the Mint, and had to supervise the issue of 2 new

. ‘,j't}pe of colnage.

On October 1, 1667, he was made a Fellow of Trinity College
and the following year he took the degree of Master of Arts.

In the summer of 1669 he handed Barrow a paper he had
drawn up and in which he had partly explained his principle
of flurions. Barrow’s admiration of this paper was so great
that he described Newton to another Cambridge mathema-
tician, John Collins, as of “unparalieled genius.” Unfor-
tunately, Newton was too medest to follow Barrow’s advice
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and publish this paper. Had he done so, it would have pre-
vented vears of undignified squabbling between Newton’s
followers and those of Leibniz.

Shortly after receiving this evidence of Newton’s mathe-
matical genius, Barrow, who wished to devote his time to the
study of theology, resigned his professorship of mathematics,
and on his strong recommendation, Newton, then only twenty-
seven years of age, was appointed to succeed him. - O\

In those days the Lucasian Professor of Mathematics gas
required to lecture only once a week during term time, gniaoine
mathematical subject or on astronomy, geograpliyy “optics
(the laws of light); or statics, and to give up two Hours a week
for consultation with students. Newton chose optics for his
first lectures, in which subject he had alrea.qy ade far-reach-
ing researches and discoveries. The rgsu]}s of his researches,
however, were for some years knowin.only to his Cambridge
audiences. When, however, be was' elected a Fellow of the
Royal Society in 1672, he sent that body 2 long paper based on
his lecture notes, and, in_this way, his work in connection
with the composition af\light became known to scientists
throughout Europe @m’ost immediately, Newton found him-
self involved in the kolent controversies we mentioned earlier
in this chapte;k'és;;ecially with another Fellow of the R-oyal
Society, Robgrt Hooke, an ahle scientist but a controversialist
whose offenSive style of argument distressed and disgusted
Newtofin"Another objector to some of Newton’s theories on
light'was Lucas, the Professor of Mathematics at Liége, whose

‘ 'Glfit\l'cisms aroused the weary complaint from Newton, men-
tioned earlier in the chapter.

Despite his statement to the secretary of the Royal Society
that “if T get free of Mr. Lucas’s business, I will resolutely bid
adieu to it eternally, excepting what I do for my private
satisfaction, or leave to come out after me,” he nevertheless
continued to publish many papers ol the subject of light in the
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Philosophical Transactions, ag the official journal of the Royal
Society was named. In these papers Newton put forward the
theory that light was composed of tiny corpuscles, or particles,
that were projected through space by luminous bodies. This
theory was abandoned by scientists early in the nineteenth
century in favor of Huygens’ wave-theory, which necessitated
the concept of the existence of a weightless, invisiblemedium
called the “ether” which could not be perceived &y any of our
senses but which permeated space and filled the tiny gaps be-
tween molecules of air and other matter. &O

Until 1900, this wave theory seeméd’to explain all the
phenomena of light, but since that date scientists have been
forced to admit that it will not/@ecount for all those phe-
romena. Max Planck in 1900 ~s:@gcsted that light is trans-
mitted in small “lumps™ or Glania. The general reader who
wishes to get an idea of &' work done by Planck, Compton
and Einstein in connectioh with the guantum theory will find
a scholatly yet easy-tosread treatment of this branch of higher
physicsin Dr. D, E-Richmond’s The Dilemma of Modern Physics
(Putnam & CowAtd.). These problems are outside the scope
of the stor,y%) mathematics; we must content ourselves by
noting t\hétt' modern scientists cannot explain all the phe-
nomeQé, of light without the use of both the wave theory and
the-duantum theory. Thus, it may well be that Newton was

©o-the right track when he put forward his corpuscular theory
sof light.

2
AN
)

3

In 1673 a curious incident arose that throws light on New-
ton’s financial circumsiances, or possibly points to his pos-
sessing an unexpected appreciation of the value of money. In
those days, a fellowship at Trinity College could be held only
for a limited period by a man whe was not in holy orders.
Since Newton, though of a deeply religious mind, had no de-
sire to be ordained, his fellowship was due to expire in the
autumn of 1675. He seems to have been disturbed by this
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probable loss of his income, for he wrote to Oldenburg, the
secretary of the Royal Society: “Sir, I desire that you will pro-
cure for me that I may be put out from being any longer Fel-
low of the Royal Society: for though I honour that body, yet
since 1 see I shall neither profit them, nor (by reason of this
distance) can partake of their assemblies, I desire to with-
draw.” Oldenburg seems to have offered to apply to the,
Society to excuse his payments to them, for Newton Wrote\to./
him, “For your proffer about my quarterly payments, I\thank
you, but I would not have you trouble yourself to. get ‘them
excused.” Later, “It was agreed by the councilithat he be
dispensed with, as several others are.” However, in 1675 a
special exemption was made in his case, perhitting him, as
Lucasian Professor, to retain his fellowsHip-without having to
take holy orders. His financial affairs,thus seem to have im-
proved by 1676, for in that year h& was able to subscribe £40
{equivalent to some $1,000 in\ thodern purchasing power)
toward the building of the'pew library for Trinity College.

During the years 16740 1677, the infinitesimal calculus
was being developed jﬁd}pendently in Germany by the mathe-
matician Leibniz, theugh his work on this subject was not
publisned until 1684. We shall glance at the life and work of
Leibniz laterifr'this book.

To retufiito Newton. Between the years 1673 and 1683 his
lecturés'at Cambridge were on the subject of algebra, par-
ticqlatly with regard to the theory of equations. His lecture-

,,\1103;'63 were put into book form and printed in 1707; they de.al
With many important advances in this subject, especially in
connection with the so-called “imaginary” roots of certain
equations, a subject which we shall discuss later.

In 1684 Newton was paid a visit by his friend Edinund
Hslley which was to have momentous consequences. Halley,
Hooke; Huygens and Wren had been engaged in trying to find
an explanation for the laws empirically discovered by Kepler
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regarding the movements of the heavenly bodies. Halley ex-
plained that their investigations were held up by their in-
ability to apply Kepler's laws (see page 204) in order to de.
termine the orbit of a planet. Newton immediately told Halley
that, some five years before, he had proved that the orbit
was an ellipse. e was not able to put his hand on the pdper in
which he had made the calculation in 1679, so he promised to
work it again for his friend. This promise evidentlyled him to
return once more to the subject of universal grayitation during
the summer vacation of 1684, for his lecthres during the
Michaelmas term of that year dealt withftlﬁs subject. Halley
visited him again in the middle of thisMtrm, and studied his
manuscript lecture-notes, Thcse'.‘nbt’es, entitled De Moin
Corporum (“Concerning the Movement of Bodies”) are to be
seen today in Cambridge Uniyérsity Library. Halley urged
Newton to publish them, butiiad to be content with a promise
that they would be sent'to the Royal Society, which promise
Newton kept early the“following year. Thanks to the tactful
pressure exerted by Halley, which we mentioned earlier in this
chapter, Newton)tiow became deeply engrossed in the whole
- problem of ’g}a\itation. In 1685 he was able to prove that the
‘total attraction of a solid sphere on any mass outside that
sphere’eguld be considered as if concentrated in a single point
at ifg'center. “No sooner had Newton proved this superb
Qéoi’em—and we know from his own words that he bad no
«\expectation of so beautiful a result il it emerged from his
" mathematical investigation—than all the mechanism of the
universe at once lay spread before him. . . . Tn his fectures of
1684, he was unaware that the sun and earth exerted their at-
tractions as if they were but points. How different must these
propositions have seemed to Newton's eyes when he realized
that these results, which he had believed to be only approxi-
mately true when applied to the solar system, were really
exact! Hitherto they had been true only in so far as he could
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regard the sun as a point compared to the distance of the plan-
ets, or the earth as a point compared to the distance of the
moon—a distance amounting to only about sixty times the
earth’s radius—but now they were mathematically {rue, ex-
cepting only for the slight deviation from a perfectly spherical
form of the sun, earth, and planets. We can imagine the effect {
of this sudden transition from approximation to exactitudesn
stimulating Newton’s mind to still greater efforts. It wasnow
in his power to apply mathematical analysis with ghsolute
precision to the actual problems of astronomy.” [Dx Glaisher’s
address on the bicentenary of the publication of $hePrincipia;
quoted in W. W. R. Ball's History of Mathematics (Mac-
millan) ] N

The efforts to which Newton's midd ‘was now stimulated
were so immense that by April, 1686, He sent the first book of
the Principia to the Royal Sociéfy; the second book by the
summer of the same year; thewthird book he had completed in
manuscript form by 1687 The whole work was published at
Halley’s expense in the summer of 1687. This was the great
work which a centur’ytlater was to be pronounced by Laplace
as assurcd of “a pre-eminence above all other productions of
human gentug,2)

As we havg-aiready noted, Newton made use of geometric
methods fball his proofs in the Principis, since he realized that
his flirgienal calcalus would be unknown to other mathema-
ticjahs and might thus lead them to dispute results which
. (W¢te themselves opposed to many of the theories prevalent at
<) the time, such as Descartes’ theory of the universe. _

Another factor that probably weighed with Newton In
reaching his decision to employ the familiar Greek geometry
was that the calculus had not been fully developed when -he
wrote the Principia, and consequently was not then as superior
to Greek geometry as it later became. Since Newton gave his
geometric demonstrations without explapations, only out-
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standing mathematicians were able to follow his concise
reasoning. Nevertheless, thanks to thejr enthusiastic accept-
ance of the book, Newton’s theory of the universe soon found
widespread acknowledgment, except in France, where his
views met with opposition for many years. In 1736, however,
Voltaire, with the aid of his friend, Madame du Chételet, 5
distinguished mathematician, wrote a long treatise- on the
Newtonian system; which led to its acceptance<in France as
elsewhere in Europe. So great was the demand for the Prin-
cipia that by 1691 it was impossible to purchase a copy of the
work. ~¢

In 1687 Newton took a prominef\part in upholding the
privileges of Cambridge University,when they were threatened
by King James II, and in 1689,4u"recognition of the firmness
and determination he had displayed on this occasion, the
University chose him as thiir member of Parliament. He does
hot appear to have taken any part in parliamentary debates,
however, and in 1699:he gave up his seat and returned to
Cambridge. O\ _

For the moment we must leave Newton, and take notice
of a great contemporary of his in Germany.

Gottiried Wilhelm Leibniz was three and a half years
youngertthan Newton, having been born on June 21, 1646, at
Leipaig, where his father (who died six years later) was Pro-

5sbr of Moral Philosophy. Even as a child, Leibniz was an

{avid reader; he is said to have taught himself Latin by study-
3% ing an {lustrated edition of Livy’s history, and to have com-
"N menced the study of Greek hefore he was twelve. He then
turned to logic, and before he was fifteen had formed the
opinion that both the ancient and medieval treatment of the
subject stood in need of reform.

In the antumn of 1661—precisely the same date when
Newton first went up to Trinity College, Cambridge—Leibniz
entered Leipzig University, although he was only fifteen at
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the time. Here he studied law, a course which included the
study of the works of certain thinkers of his day—men like
Kepler, Galileo and Descartes—which were bringing about a
revolution in scientific thought and philosophy.

In 1666-—the year when Newton was busy developing his
method of fluxions—Leibniz presented himself as a candidate
for the degree of Doctor of Law, but found himself debarred on
account of his youth. Disgusted, he left Leipzig, never to 1e)y
turn. He then presented his dissertation for a doctor’s degree
at the University of Altdorf (Niirnberg) and not only obtained
the degree but was also offered a professorship. Refilsing the
professorship, Leibniz setiled in Niirnberg, where he published
an essay on a new method of teaching and 1e{rping law which
so impressed the Elector of Mainz that he fotind himself ap-
pointed to assist in drawing up 2 revisgoyl})f the statute-book.
Subsequently, he was sent on various.diplomatic missions, in
connection with which he wrote-§éveral essays on political
matters. He took a hand in ¢he dangerous game of power
politics, seeking to divert, ftom Germany to Turkey the ag-
gressive threats of Louis'XIV by proposing that the great
powers in Europe ghiould combine in a crusade against ?he
Turks—and that F;ce shonld increase her power by seizing
Egypt from thgm This Machiavellian plan came to notl_:ing,
though, strange to say, it bore good fruit indirectly. Leibniz
was § ored to France to put his plan before Louis X1V,
and while in Paris came into contact with Huygens. Before
making this journey, Leibniz had a long list of dissertations to
) 'hia\Cr edit, covering an amazing variety of subjects: law, p?h'
tics, logic, natural philosophy, theology, mechanics, optics,
while he had invented a calculating machine that was iar
superior to that of Pascal, in that multiplication, division and
the extraction of roots could be performed on it, as well as ad-
dition and subtraction. Under the guidance of Huygens,
Leibniz began to study mathematics seriously. In January,
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1673, he had visited England on a political mission for the
Elector of Mainz, and had met Oldenburg and exhibited his
calculating machine to the Royal Society, of which he was
elected a Fellow in April, 1673.

On his return to Germany in 1674 he wrote to Oldenburg,
saying that he had discovered important theorems comected
with the quadrature of a circle., Oldenburg replied that Newton
had already used similar methods. In 1676, Newtn sent a let-
ter fo Leibnig, through the hands of Oldenburg), dealing with
his expansions of binomials, and also with infinite series and
other matters. Leibniz wrote back asking for fuller explana-
tions, and in his reply—which occupied thirty pages when
printed later—Newton gave Leibhiz the desired information.
He then added the remark thag };bout 1669 he had given Bar-
Tow an outline of his method‘of fluzions. He gave no explana-
tion of that method to Lgibniz, however, being careful to
conceal its nature in thehagram “6a cc d » 13eff 71 31 9n 4o
4qrrds 9t 12vx.” Ifalp a’s, two c’s, one d, etc. are arranged in
& certain order, they form the Latin sentence “Data zxquati-
one quotcungue) fluentes quantitates involvente, fluxiones
invenire; et “ite versa.” [Given an equation involving any
number of\Buents, to find their fluxions; and vice versa] In
this way "Newron, without disclosing his method, could later,
if netessary, establish 2 claim as its inventor. Tt seems strange
that'a mind so great ag Newton’s should have been capable of
\an unwillingness to share his invention with Leibniz; he had
v already made it known in Cambridge, to Barrow and Collins,
in 1669. Possibly he 1eared he would be led into one of the
controversies he detested if ke allowed his method to become
known to mathematicians outside hig circle of friends. Finally,
Newton told Leibniz that he had two methods for solving the
“Inverse problem of tangents” (integration). Once more, he
was careful to disguise his methods in an anagram. Leibniz
replied on June 21, 1677, making no attempt at concealment in
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explaining his method of “differences” and revealing his no-
tation dx and dy for infinitely small differences in successive
codrdinates of a point on a curve. He also showed that he
understood the principle of integration.

In 1684 Leibniz made public his methods in a scientific
paper he had founded, called Acta Eruditorum. Thus it came
about that although Newton had invented his method of
fluxions many years before Leibniz had invented his methodiof)
“differences,” Leibniz was the first of the two to publish. his
method. ' : N

At this time the two great men were on friendly gxd cordial
terms. In the first edition of the Principic Newton mentioned
the correspondence he had had with Leibniz'and actually
stated that he had concealed his method fRuxions from him
in an anagram, but that Leibniz “thap) most distinguished
man” had communicated his own'.métl'lod to him, which, he
said, hardly differed from his own®xcept in the expressions and
symbolism used. [Later, whenthe third edition of the Principia
appeared, in 1726, Newton. deleted this passage.]

From 1684 until 1699.h0 suggestion was made that Leibniz
was not the inventofiof his own particular caleslus differentialis.
Then, in 1699, an dhscure Swiss mathematician, who was living
in England and@ho had been angered at having been omitted
from a list of‘eminent mathematicians drawn up by Leibniz,
insinuat@:in a paper read before the Royal Society that
Leibni# had not invented his form of calculus but had based it

on Newton’s method of fluxions.- .
“\Naturally, Leibniz was annoyed, and doubtless not a little
Perplexed in view of Newton’s emphatic assertion in the
Principia. He replied to the attack, in the Adla Eruditorum,
and protested to the Royal Society. )
Nothing more might have been heard of the wretched busi-
ness had not Lejbniz in 1705 written an unfavorable review f’f
the first account of fluxions to be published by Newton, In

#N

Q!



O
N

220 MAKERS OF MATHEMATICS

1704, as an appendix to a book dealing with optics. Tn this re.
view he remarked that Newton had always used fluxions i
stead of his own “differences,*’

The Savilian Professor of Astronomy at Oxford, John Keill,
considered that by this remark Leibniz had accused Newton of
plagiarism, and then proceeded to accuse Leibniz hitgself of
having publisked Newton’s method as his own, mefely chang-
ing its name and notation, O

Once more, Leibniz appealed to the Royal Seciety, of which
Newton had been elected president in 1703 {Bic remained presi-
dent until his death twenty-five years 14€e}). Liebniz requested
that Keill should be induced to withdeaw the imputation that
he bad stolen his method from Newfon. A tactful remark from
Newton as president (for instaneg)A reiteration of the assertion
he had made in the Principig) f:rﬁght even now have saved the
situation. Unfortunately, ifWas not forthcoming. It may be
that N ewton—always déeply sensitive to criticism—was re-
sentful of Leibniz’s unfavorable review in 1705 of his fluxions.
No suggestion wa&'rﬁade by him or the Royal Society that Keill

should withdras his imputation of fraud. Instead, a committee
was appo.in‘geéx\'o report on the whole matter. In their report,
issucd in 1742, they stated: “The differential method is one and
the sam® With the method of fluxions, excepting the name and
modé 01 notation; Mr, Leibniz calling these quantities dif-

fe@:ées which Mr. Newton calls momenis or fluxions, and

«Iharking them with the letter ¢, a mark not used by Mr.
,"Newton. And therefore we take the proper question to be, not

who invented this or that method, but who was the first in-
ventor of the method; and we believe that those who have re-
puted Mr. Leibniz the first inventor knew little or nothing of
his correspondence with Mr. Collins and M. Oldenburg long
before; nor of Mr. Newton’s having that method above fifteen
years before Mr. Leibniz began to publish it in the Acta
Eruditorum. For which Ieasons, we reckon Mr., Newton the
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first inventor, and are of opinion that Mt. Keill, in asserting
the same, has been no ways injurious to Mr. Leibniz.”

In 1715 the report was published in full in the Transactions
of the Royal Society. In his Life of Newton, Brewster states
that almost the whele of the manuscript of this report was in
the handwriting of the president of the Royal Society, Newton, {

The dispute now went from bad to worse and continued lo
after the death of Leibniz in 1716 and that of Newton, in 1% 29
In both England and Germany the rights and wrongs of'the
senseless controversy became submerged in questions ‘of na-
tional pride and prestige. Today, after an intérval of two
centuries, the dispute seems inconsequentighand fantastic.
Two great minds were at work on the material provided by
Kepler, Cavalieri, Fermat, Pascal, Walli§ #nd Barrow. It is not
surprising that they both reached similar conclusions.

In 1734 certain important critigisis regarding the vaiidity
of the methods employed in ¢he' infinitesimal calculus were
made by Bishop Berkeley, q,p:'frishman who spent several years
in what was then the English colony of Rhode Island, and
who took a great interest in what was then known as Yale
College. On retufhing to England he was made Bishop ?f
Cloyne, in County Cork, Ireland, though he spent much of his
time in Londenliterary circles that included writers like Swift,
Steele and Addison. .

_ BC{k{lé}? attacked the use of infinitesimally small quantities,
saying that the reasoning employed was false and illogical,
and>that therciore the conclusions based on such reasoning
Cyere unacceptable. If correct results were obtained, this was
due to one error balancing another, said Berkeley. Thes.e
criticisms appeared in a book called the A::miyst, w.hose pri-
mary object was to try and show that Christian doctrines were
no more inconceivable than were these mathematical 1dea..s
of his day. “What are these fluxions?” he asked. “The veloci-
ties of evapescent increments. And what are these same
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evanescent increments? They are neither finite quantities,
nor quantities infinitely small, nor yet nothing. May we not
call them the ghosts of departed quantities?”

Berkeley’s criticisms bore good fruit, for they led the Scot-
tish mathematician Colin Maclaurin (1698-1746) to write his
Treatise on Fluions (1742), Tn the preface he said «tHat the
book was written in consequence of the attack o Newton's
method made by Berkeley in 1734, Maclaurinproved the
validity of Newton’s conclusions by means f geometsic
demonstrations. 'However, it was only the mradual develop-
ment of a rigorous treatment of the idea.éf 0 Yt during the
eighteenth and nineteenth centuries $haf finally silenced the
critics by eliminating the use of infiditély small quantities and
the baflling problems of infinity idvolved in them.

Meanwhile, this concept ofa¥mit was being grafted on to
the differential caleulus of\ Leibniz by mathematicians in
Switzerland, Russia (the\Work there being done by Swiss
mathematicians) and France. We sha]l return to this subject
and to a consideratien of the method invented by Leibniz after
we have glanced-at the concludin g events in the life of the in-
ventor of theftxional calculus.

From the'point of view of mathematics, Newton must be re-
garded a§having wasted the Jagt thirty years of his life in oc-
cupations unworthy of his supreme talents. While he was living
in Lotidon, as & Member of Parliament for Cambridge Uni-
Jersity, he made the acquaintance of John Locke, the great
~\philosopher who was also intimitely connected with English

~O " politicians, himsels being for a time Secretary of the Board of

Trade. Locke and other friends of Newton felt that it was out-
Tageous that the most eminent scientist and mathematician
of his age should be dependent on the meager salary of a college
professor and fellow. By their efforts, Newton was appointed
Warden of the Mint in 1693, an appointment worth £500 a
year (some £3,000, tax free, in the year 1949) but making
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so few demands on his time as to allow him to retain his Cam-
bridge professorship. In 1697 he was appointed Master of the
Mint, a post worth two to three times as much as that of
Warden, He then appointed a deputy to perform his work at
Cambridge “with full profits of the place.” In 1701 Newton re-
signed both his fellowship at Trinity and his Lucasian pro-
fessorship. In 1703, as already noted, be was elected president.,

of the Royal Society, and two years later he was knighted by s

Queen Anne. This was the period when Winston Churchills
ancestor, the Duke of Marlborough, was winning farae'as a
great military commander. The death of Queen Anhéin 1714
brought Leibniz’s master, the Elector of Hanover; to the Eng-
lish throne as George I. In 1714 Newton gave\s\ﬁdence before a
committee of the House of Commons in{ dohnection with a
petition that had been presented to Pacliament by a group of
captains in the Royal Navy and the mferchant service. They
petitioned that steps should be takén to discover some method
whereby the longitude of a ship'at sea could be determined
accurately. In his evidenge, Newton criticized various sug-
gestions that had been made, and at his suggestion, large sums
of money were oﬁei'e\fi “4s rewards for accurate methods for
determining longititde at sea (see page 139).

In 1725 Néwton wrote to the University of Edinburgh,
offering to pr&vide the salary for a deputy professor of mathe-
matics. ‘Colin Maclaurin was appointed to this post, and
shortly‘ﬁterwards became full professor.. )

Daring this period of his life, Newton paid much attention

ofs‘: ﬂieo}ogica,} and p}:ulosophical studies in addition to the
afduous duties he undertook as Master of the Mint.

Toward the end of his long life, he was troubled with illness,
though he continued to preside over the Royal Society. He
died on March 20, 1727 and was buried in Westminster Abbey.

It is impossible to avoid a feeling of regret that Ne'wton
should have allowed himself to be persuaded to degrade his un-

Q
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rivaled talents by accepting a well-paid government post that
robbed the world of his genius for a quarter of a century,
Had he, like Archimedes, given up all his long life and all his
talents to science and mathematics, there is no knowing what
further great advances in human knowledge might have been
achieved in the quiet seclusion of a Cambridge collegef,

As it was, in the twenty-two years between 1665'and 1687,
he leit for all time the stamp of his supreme genius oh mathe-
matics and physical science. It is to the author of the Principis
and the inventor of flyxions, and not to theMaster of the Mint
that the world Jooks back with gratitude'and awe as the first
mind in eighteen centuries that equalléd the mind of Archi-
medes. N

R



CHAPTER VIII

Leibniz, Gauss and Others

Or more than a century after the death of Newton, English . {
mathematicians were so involved in their senseless dJSpute‘
with the followers of Leibniz that they failed to benefit from -
great developments in the calculus that took plaoe ou -the
Continent of Europe.

Leibniz, like Newton, considered that any vanable quantlty
continually increased or decreased by momenfaly increments
or decrements. These infinitely small changes'in value were
represented by Leibniz by the symbol g Thus, dx meant an
infinitely small change, or difference i Jthe value of x, &y an
infinitely small difference in the valie of y. We have seen that
Leibniz explained this in his letter~to Newton of June 21, 1677
(sce page 318).

Leibniz, like Newton, falled to explain the principles of his
calculus with clarity orGigor. He sometimes thought of dx and
dy as being lines of fihite length, sometimes as being infinitely
small quantities, Hxé seems to have considered that any finite
number is ma:de tp of an infinite number of infinitely small.
values, wh;qh, though so small that they cannot be measured,
yet ha.v\zr definite size. All the “infinitesimals” whose sum

' made u,p a number were considered to be of the same magni-

d
«{ﬁgle 'Leibniz therefore considered that _dii was simply the ratio

of the infinitesimals of the two variables x and y, and that this
ratio had a finite, measurable size. This view has long since
been abandoned, though we still make use of Leibniz’s notation

&y as indica.ti_ng the derivativeof y = f(x).

325
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Nowadays, it is usual to introduce students to the calculug
by using the symbol D for “derivative.” Thus, D;y means
“the derivative of y with respect to x.” The small x may he
omitted if there is no danger of ambiguity. Thus, D =2 = 2x;
D x* = 3x% D(3x®~ x%) = 6x — 3x% and so on (see page
303). In other words, to use the symbolism introdyeed on
page 308, .

Ay,
DIY=A.En—lm'AA_z . \\ .

The use of the symbol D makes it clear tHat'the derivative
is not a ratio between increments of two ariables when such
increments are infinitely small, but is $he limit which the ratio
of those increments approaches as g ancrement of % approaches
zero. (&

~\
Once the student has grasped this essential fact it is usual to
revert to the notation used jEy Leibniz, namely, ? instead of
™ X
D.y. The use of tbis‘ggit’ib g—y, whick must not be regarded ony
.. X

longer as @ ratio befween « and y increments (although it was so
regarded by 1tf§ ~iﬁventor), is one reason why many students
have difficulty in understanding the calculys, However, it is
now too &te to eliminate this niotation, since it has been estab-

. \) : d
lishedby long use. It must always be remembered that EI%’ a8

‘.r'épl:esenting a derivative, is nﬁsleading in appearance, since
Vit does not represent the raio between infinitely small incre-

)

O

ments of two variables, but the Limit fo which that ratio ap-
proackes.

The distinction between dy and an increment in the length
of an ordinate can best be grasped geometrically. Figure 100
illustrates the modern view, which makes a clear distinction
between Ay (the increment in the length of an ordinate ¥,
which corresponds to an increment Ax in the distance of that
ordinate from the origin) and dy.
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/ Ay

dy ,’\“'
» } ) O

S~ Ax [=dn]. )
y| y @

X Ax [=dx]

t'/./

4
Fie. 100 A0\

We have already defined Ax a‘s"“".a horizontal ste?_to the
right from a point P on a curve,and Ay as “the vertical step
then required to reach the cuive once more.” We may now
define dx as having the safje meaning, in general, as Ax, but
dy as having on entirely different meaning fﬂmf that of Ay.
When a step ax (qr}i}) has been taken to the right of P, dy
stands for the verticl step then required i reach the tangent at
the point P, Wehave already seen {page 204) that the slope of
the tangems;ﬁ P is the limit which the average slope between
P and Q\approaches as Ax approaches zero. In other words,
the Wf:rage rate of increase in the length of the ordinates be-
twéen P and Q approaches the instantaneous rate at P when

“a¥ approaches zero. o
Tt will be seen that except in the case of a straight line, the

ratio i—i (average slope between P and Q) constantly changes

dy ) i
as the length Ax changes, but that the value of o as just de
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fined, in general, never changes, no matter what may be the

value of dx (which is rever zero). Moreover, :——j{r is never equal
Ay Ay

toz— but is the limit which A_x- approaches as Ax approaches

zero, Figures 101, 102, 103 and 104 illustrate these essential

concepts geometrically and arithmetically. O
Y ;
y O\
N \\ é
& /
11+ - - ' (‘
l"\'“
10 O
ol N
X '\\\’
8- N
) T Ay 8
7 = D oCay
?q Here, A2
oL dy _4_,
dx 2
d 1
W
\
3 e/
| Ax[=dx]=2
2 I : Fig. 101
' |
[
Y| Y|
1 I |
| |
0 1 2 3 X
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Notice that in all the above cases, dx represents an arbitrary

is in
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We still call dy and dx “differentials,” although they are no

e dy,
longer regarded as “infinitesimals.” The reason why Eij is often

called the “differential coefficient” of ¥ with respect to x will
be seen from the following illustration:

Supposed y = 3x¢ ~
Then — = 12x® \
dx

2\ .
Regarding “dx’ as “g step to the right” @d\not as an in-
finitesimal, we can write this equation as ™
dy = 12x%dx. R&4

So we see that 12x3, or j—y , is the bdefficient of dx when the
X AY;

differential dy is written in tes 1®'of the variable x and the
“step to the right” dz. PN

We also extend the functonal notation so as to include
symbols for derivatives, @rderived functions. The derivative of
i(x) is indicated by the Symbol £'(x). Thus, if

=% + 5x2 + 3x [= {(x)],

the derivative of this function of x may be written in any of
the followi '\iva’,ys:

Either Dy = 3%+ 10x + 3
or DE® 4+ 553+ 3x) = 3% 4 10x - 3

,.\i..»“gi—' = 3x" 4 0x + 3
5 op G4 522 4 )
A N dx
V wi(x3+5x2+3x)=3x’+10x+3
or f'(x) = 3x2 + 10x 4 3
Thus, if f(x) = 8x!, '(x) = 32x% and so on.

Tt is often possible to find stccessive derivatives of a funiftiO!_l»
Thus, the derivative of the derivative 3x* + 10x + 3 will be

=34+ 10x+ 3 -
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6x < 10. This is called the second derivative of x® + 5x* 4 3x,
and is indicated either as
f'(x) = 6x + 10

or as d2y = 6x + 10
. , . dy. . .
The explanation of the notation ety somewhat complicated. .M
Suppose y = x* [= f(z)] R\,
dy

Then =% = 4x?
en == [= f@®)] N
o dy = 4x%dx LV

Bearing in mind that dz is a constant and not.afunction of x,
we will now differentiate both sides of this ¢guation.
[Since the dx on the right-hand side df ‘the equation is a
constant and not a variable quantity™n«this case, the deriva-
tive of this side will be dx times the derivative of 4x%.]
d(dy) d:x d(4x*)]
dx dz

%’g = dx[12z7

Divide each side byjthe arbitrary constant dx,

¢
o\l 2 99y)
v (dx)*
Thig {.abbreviated to
d “\ ' dy = 12x? (read: “d2yoverdzx square’”)
QO ax?

and is an alternative to the simpler notation {"/(x) = 125*
[where £(x) = x4 {'(x) =

~ Since a derivative mdlca.tﬁs the rate at which the function
from which it is derived is increasing at any given moment, it
follows that if s feet = distance traveled by some object;
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t seconds = time taken, and s = f(t) [that is, s is given by
some expression in terms of t] then
distance = (1)

rate = f'(1)
acceleration = f''(1), since acceleration equals increase in
rate in unit of time. ~

For instance, suppose s = 153 — 4 = f(t)]

Then rate [= £'(t)] = 4512 — 4¢3 f¢. persec. ()

and geceleration [= £/(t)] = 90t — 124241, per dec. per sec.

Thus, if t = 2, distance = 120 — 16, or 1044,

' fate = 180 — 32, or 148 5t per sec.
acceleration = 180 <48 = 132 ft. per sec.
per sec.
Newton had invented precise

w\,/

(the same process in his
method of fluxions. As we sawpHe denoted a flowing quantity,
or fluent, by x, and its fluxion” by %. He then denoted the
fluxion of % by %, the fluxion'of % by X, and so on. This no-
tation is still occasionallrencountered in the works of modern
writers. N
{The general readet is now advised to turn back to pages 254~ -
264, and revi wﬁWallis’ Law before proceeding.]

In 1684, and'again in 1686, Leibniz published articles in the
Acta Eruditdorum on what he called the Calculus Summatorius,
since 1{ was connected with the summation of a number of
infinitely small areas, whose stm he indicated by an old-

ig%i"oned letter S, written S In 1696 he followed a suggestion

~Smade by Johann Bernoulli of Basel, Switzerland, and changed
\ this title to Calcalys Iniegrali, “The integral calculus,” the

idea being that some whole area was obtained by summation of
its parts. This corresponded to Newton’s “Inverse method Of
tangents,” but was developed from the works of Cavalieri
and Pascal instead of from those of Wallis, These mathema-
ticlans had shown that what we called an “area-function” in
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Chapter VI could be found by summation from an “ordinate-

function.”
Let us compare some of the area-functions we found in

Chapter VI with their ordinate functions:

Area-function Ordinate-function

4x [or T 4xY] 4 for 4x"

2x2 [or 4 4x7 4x [or 4x'] Ko
14xt 4x? N\
x* Jor % 4x% _ 4% ~\ N
1455 4xt K7, ’

Tt will be seen that the ordinate funciion & the dé?é\mtz've of the
area-funciion. R

Now, if the x-value of any ordinate i;'\*é,u\bstituted for x in
any derivative, the rale ai which the pled is increasing af that
poini will be given, as We 5aW On PAge 234. But this substitution
will also give the length of the ordiisnle at the point having that
x-value. N

1t follows that fhe Emgtk’ of the ordinate al ony poini ot a
curve indicates the ratecabavhich the ares under that curve is in-
creasing instantanedusly ot that point. This fact is most curious

and important. It is worth w ile to arrive at the same conclu-
sion from angtler standpoint.

Suppose/ Bigure 105 represents part of the graph of y =
%2 -+ 4Ngud that we wish to fnd the area bounded by MO,
OP,.PS and arc MS. -

_The greater the value taken for x, the greater will be the area
ihvolved. So the area we wish to find is a function a?i .

Now take a step Ax from P and call it PQ. QU will now be
y 4+ Ay, the vertical step necessary to take us to the curve
again. By this increase Ax in the x-value, the area h?.s been in-
creased by the figure PQUS. We will indicate this increase 1n
area by the notation Alarea).
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It will be seen thatin TFigure 103, A{area) lies between the
areas PQRS and PQUT; that is, between y(Ax} and (y +
Ay)Ax, Tt folloWws. that any fraction of Alarea) must lic between
that same fragion of these other two areas. So if we divide each
of these thiree areas by Ax it will follow that

\ A(area)

O Ax
;;ﬁ'hen Ax approaches zero, Ay also approaches zero. In other
\ Afarea)

lies between y and (y + Ay)

4 n\' - .
“\\/words, when Az approaches zerg,

lies between y and a

value approaching v.

.. Alarea
SOMhﬂo( )

=y = x4 4

In other words, the derivative of the area with respect {0 X
is equal to y, the length of the ordinate PS. So by substituting
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the x-value of P, the rate at which the area is increasing at the
point S can be found from this derivative.

Now let us see how the area can be found from the equation
y = x? 4~ 4. Since, in this example, the derivative of the area
is x2 + 4, by an application of Wallis’ Law, the formula for
the area will be 1 x® + 4x -+ ¢ (see page 305).

But in this particular example, if x = 0, then the area = @),
and consequently, ¢ = 0. So we can say that for all valueyofix"
measured to the right of the y-axis, the area = 3 x° -, &g\

Tt follows that by substituting ary particular value of x in
this expression, the area up to the ordinate having that x-value
can he'found. Thus, if x = 5, the area will equaly (5)8 + 4(5),
or 61§ square units, N

Now suppose we wish to find the area-of the shaded portion
in Figure 106, which represents the ganie curve as the one in

Figure 105. N
y N
A N\
4 [N
a0
i"\\ *&1‘
4™
<" _//1’
:t\,,. [
:"\.QO
) )
L W
- X
2 5
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We have seen that the area between the y-axis and the
ordinate whose x value is 5 is 612 square units. If we now suh-
tract the area between the y-axis and the ordinate whose
x-value is 2, we shall have the area of the shaded portion. Thus:

Area of shaded portion = 613 — [3 (2 + 4(2)]

= 61% — 102
= 51 square units.

This process of finding an area-function from itS\ordinate-
function is still indicated by the notation invented'by Leibniz,
although that notation is misleading. Wf;,}gdire seen that
Leibniz used the shorthand dz to indicatesan infinitely small
x-increment. He expressed an area suchva$ that of PQUS in
Figure 105 when infinitely small as though it were the rectangle
¥(dx). He then expressed the sumyof the infinite number of
such “rectangles” composing the\area concerned, as /y(ds).
Although this concept, together with his notion that an “in-
finitesimal” has a deﬁqité’..rﬁagnitude +has long since been
abandoned, we still adkiete to his misleading notation, A bet-
ter, and logical notation would be “Area = f° y{Ax) as Ax
approaches zeroX(read “Area equals the limit to which the
sum approache§\as Ax approaches zero.” However, it is 0o
late to do anﬁ\hfng about it now; the customary notation must
be acceptédy though with mental reservations. Using the no-
tationefLeibniz, the problem we have just worked would be
expg@s&d either as

AL = Lo ) dx — o 4 4) s

Q.

\0r more shortly as

Area = ,{ 5(x”‘ + 4) dx

This last expression is known as a definite integral, in which S
is the “upper limit” and 2 the “lower limit.”

We have seen that the process of integration is the reverse
or inverse process to that of differentiation, just as division is
the inverse process to multiplication. Thus, we can forget all
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about “‘summation” and “areas” and simply apply Wallis’
Law to a derivative in order to obtain the original function.
As an illustration, consider the following problem: “A ball is
thrown vertically downward, with an initial speed of 40 it.
per second, from a window in the Empire State Building that is
1000 ft. from the ground. How far from the ground will the
ball be after 5 seconds have elapsed?”

We saw on page 298 that dewnward speed in problems of
this nature is marked as negative. From the table on that'sanie
page it will be seen that the acceleration of a body, that rises
or falls constantly decreases (algebraically) by 32 feet per
second every second. So in our problem, both thélmtla.l speed
and the acceleration will be marked as negative.

Let the height of the ball above the grou d at any moment
be s feet, and let t represent the numb\r of seconds that have
then elapsed.

We have seen that a,cceleratmn is f/(1). So, since the ac-
celeration of a rising or falling’ body is —32 ft. per sec. per sec.,
d?s,
A8

’(t)\t—- — [(—32)dt = —32t+ ¢

£7(1), or i —32

ds
Sincc;,\w}len t.= 0, the speed t = --40 ft. per sec.;

o 40,
~O° B )

vV “at
o (D), or s, = S (—32t — 40)dt = —16° — 40t -+ k
Since, when t = 0, s = 1000; k = 1000.
- g = —16t2 — 40t -+ 1000
. whent = 5, s = —400 — 200 1000
= 400 ft.
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Here we have a very simple example of innumerable Pproblems
that can quickly and easily be solved by means of the calculys,

Let us now turn back to the personal history of Leibniz,
His invention of the differential and integral calculus was only
one of his many-sided activities. Quite apart from ‘his mathe-
matical and scientific studies, he spent a great deal of time—
wasted time, we must fee] today—in diplomatic work, seie of
it of not too scrupulous 2 nature. We saw in ChapterVII how
he tried to divert the aggressive ambition of Lonis XTIV from
Germany to Turkey; his later diplomatic work ‘Was performed,
not for the Elector of Mainz but for the House of Brunswick.
In 1673 he entered the service of théDuke of Brunswick-
Liineburg (Hanover) and for the nexttorty years remained in
the service of this family, servingfour successive masters.
His official position was that of librarian of the ducal library
at Hanover, but he wag frequéntly called on to undertake
diplomatic missions. In this Yespect he played an important
part in securing the elevation of the Duke of Hanover to the
Electorate, or body 6f German princes who elected the Em-
peror of the “HolyRoman Empire,” which, by the seventeenth
century, had ceaséd to be an empire in anything but name. To
support the .éﬁims of his ducal masters, Leibniz wasted much
of his precious genius in compiling a history of the Brunswick-
Linebiirg family, though he was able to cover only the period
from 768 to 1005 A.p. The collection of the material for this
history led Leibniz to make a long journey through Germany

,;:and Italy in the years 1687-1690. During this period he be-
O came deeply interested jn an attempt to reunite the Protestant

and Catholic churches, writing a book on the subject (which
was not published until 1819, by which time all hope of re-
union had vanished), .
In 1700 he visited Berlin, in connection with the academy
he had planned for that city. He himself was made its president
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in 1711, He also drew up plans for the foundation of an acad-
emy at St. Petersburg, at the request of Peter the Great.
Leibniz’s plans were put into effect after the death of this czar,
by his widow, Catherine I. In 1712 Leibniz was made a baron
of the empire, an honor he had long coveted. This was the last
honor to come his way, however, for the rest of his life was
clouded by neglect. Tn 1714, his master, the elector George,
Louis, became King of England as George 1. Leibniz wishedto?
join him in England, but was told to remain in Hanover gnd'to
get on with his history of the House of Brunswick. Hedled in
1716, a lonely and neglected man. Only his secretafyckhart,
attended his funcral; no notice was taken of higdeath either in
Berlin, in the academy he had founded, notz London where
his master ruled. Only at the French Academy was a eulogy
devoted to his memory. o\

Throughout his life Leibniz posséssed the power of working
rapidly and for long periods at agretch. Even while traveling,
he worked out mathematicalproblems. He wrote very ex-
tensively on philosophical matters, basing his views partly on
those of Descartes, par’tl,} on the philosophy of Spinoza, whom
he met in Amsterdahain 1676. In this connection {philosophy)
he published in. 1666 a treatise De Arte Combinaloria in whi?h
he proposed a®ind of mathematical treatment of logic, in
which symbolism and formal rules, as in mathematics, woui-d
obviat, \{hé necessity of thinking out individual problems. This
symbolism would, he suggested, be intelligible in all langl.lageS,

) ,?«n&'trﬁth and falsehood would no longer be matters of opinton,
< Butt of correctness or error in computation. .

Today, Leibniz is not remembered for his political and
diplomatic astuteness, nor for his contributions to thfaology,
philosophy and science, but for his mathematical contribution
in the development of the calculus. At first, other German
mathematicians paid no aitention to his calculus, possibly

N

Q)
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because his statements were often obscure. In Switzerland,
however, his articles attracted the attention of a great mathe-
matician, Jakob (James) Bernoulli.

In the course of a century, this remarkable family of Ber-
noullis produced no fewer than eight great mathematicians,
of whom Jakob (1654-1705), his brother Johann (1667-1748)
and Daniel (1700-1782) the son of Johann, were the*most
famous, AN,

By the time of Jakob’s birth, the family had become rich
and prosperous merchants. Jakob was idtended for the
ministry, so he studied philosophy at the,ﬂhiverSity of Basel.
He became intensely interested in mashematics, however, but
fearing the opposition of his father,he studied the subject in
secret. Later, he chose for his motto Iaviio paire sidera verso
“I study the stars against my father’s will.” In 1682 he opened
a school of mathematics and science at Basel and five years
later was appointed to the chair of mathematics at the Uni-
versity of Basel. As aj!:’ea'cher, he won great renown, many of
his pupils becomingwell-known mathematicians. He did much
to familiarize gthers with Leibniz's calculus, which he had
mastered by<himself from the difficult articles Leibniz had
written qr the subject for the Acta Eruditorum.

In 1696'he offered a reward for a solution of an isoperimeiri-
cel problem. The word isoperimetrical means “of equal per-
imteter.” Greek mathematicians had discovered certain simple

;.:facts about the greatest and least value of a variable quantity

under certain conditions, The first examples of “maximum and
minimum” values were given when Euclid showed how to find -
the longest and shortest lines that could be drawn to a circle
from a point outside the circle, and also proved that if a line is
bisected, the area of the rectangle (here a square) containedhy
these equal segments of the line is greater than that of any other
rectangle whose adjacent sides consist of any other two seg-
ments into which the line may be divided. [See Figure 107]
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After Euclid’s time, other Greek mathematicians proved
that a regular polygon had a gteater area than an irregular
polygon which had the same perimeter as the regular polygon,
and that the area of a ciljc\le‘Was greater than that of any other
curve or polygon having(a.n equal perimeter.

In course of timelthe words mazxima and minima came to
have a wider méaning than merely “greatest” and “least.”
A curve, for insfance, can have many maximum and minimum
values, thestefns indicating the greatest or least values 2 a
porticuldr meighborhood on the curve representing some func-
tion, ~fﬁius, in Figure 108, maximum values occux at the points
A+€and E; minimum values at the points B, D and F.

\m “By the aid of the calculus it is very easy to determine maxi-
faum and mipimum values of a function. The arguments on
pages 298--301 indicate this method. Since the derivative of
a function indicates the slope of the graph of that function,
it is only necessary, in general, to determine the values of X

that make ?{ = 0 (if y is a function of x).
X
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Both Jakob Bernoulli and hig l;other Johann were deeply
interested in a new type of ,f‘iéﬁpen'metric” problem. In 1696
Jakob challenged other mathematicians, including his brother,
to solve a problem in which a curve had to be found that would
give a maximum orainimum area when each of its ordinates
was a given functipn of the corresponding ordinate of another
curve. Many European mathematicians attempted to find 2
solution, ingluding Johann Bernoull;. When Jakob declared
that his btother’s attempt was incorrect, a bitter quarrel
sprang, g’ between the two brothers. Johann often displayed
viﬁ"’l}f’temper, although he could be loyal to his particular
fdends, among whom were numbered the Marquis de I"Hopi-

Mal, Leibniz and Euler, whom we shall shortly meet. After
~ the death of Jakob, he produced a solution fo the isoperimetric

problem which he claimed to be his own, but which was really
his brother’s, This type of problem led to the development of a
branch of the calculys known as the “calculus of variations.”

Jakob Bernoulli was one of the first mathematicians to make
general use of polar codrdinales, as contrasted with the rec-
tangular codrdinates used by Descartes, Until Jakob Ber-
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noulli’s time they had been used only for drawing spirals,
Some topics can better be investigated by polar rather than
rectangular codrdinates. Tn the polar, or trigonometric system,
the position of a point on a plane surface is given by a distance
and a direction instead of by two distances each at right angles
to a pair of axes. Thus, in Figure 109,

0

Fro. 109 NV

the position of the point P may. be indicated by (1) the distance
OP, known as the radius vectfr'and marked r, from the point O,
known as the pole, and (Z)the angle §, known as the veclorial
angle, or anglethrougthﬁevhich OP has revolved in a counter-
clockwise direction’from a fixed line OX known as the polar
axis. The measiréments r and ¢ are known as the polar co-
ordinates of P.The connection between polar and rectangular
cobrdinatés’is indicated in Figure 110.

Sinc'gA'—P——“sinS AP = OP sin # =1 sin 8. But in rec-
R ) !

N 0

) ) . OA _
<mgular cobrdinates, AP =y & ¥ = 7 sin 0. Again, op

cos 6, so0 OA = OP cos@ = t cos 8. But in rectangular cotrdi-

nates, OA = x .. & = r cos 8. One of the curves discovered by

Jakob Bernoulli by means of polar coﬁrd_in-ates was the
lemmiscate, so calléd from the Greek word Jemniskos, a ribbon

on whick a pendant was hung (Figure 111).
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K _
Q\: - I‘ij_ke Archimedes, Jakob Bernoulli requested that a mathe-
*  matical figure should be engraved on his tombstone. He chose
the logarithmic spiral, presumably because it illustrates the
inscription he chose to accompany it: Eaedem mutata resurgo,

“I shall arise the same, though changed.” The logarithmic

spiral frequently reproduces itself under many different con-
ditiouns.
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Eight years after his death, a work of his entitled Ars con-
jectandi was published. Among other matters, it contained
contributions to the theory of probability which played an
important part in the development of the subject whose foun-
dations, as we saw, were laid by Fermat and Pascal.

As in the case of his elder brother Jakob, Johann Bernoufli™\
ran counter to his father’s plans regarding his work in life:
His father wished him to take charge of the prosperous trading
interests of his family, but after a year in coromexce-he re-
turned to Basel and studied philosophy and mathématics. He
lived for some time in France, where he taught theéprinciples of
Leibniz’s calculus, among his pupils being the Marquis de
I'Hépital, who later produced the ﬁ_ljSQbook to present a
systematic treatment of the subject, € ¢

Johann taught mathematics foptsn years at Groningen, in
the Netherlands, and on the dgath of his brother in 1705 he
succeeded him as Proféssor of Mathematics at Basel. There he
too won great renown aswa teacher. He had already become
famous thoughout Eurepe for his problem connected with the
curve known as thesbrackisiochrone, mentioned on page 277,
and he now plaﬁfi 4 leading part in developing the i(.lea.s and
applications of Leibniz’s calculus. He was frequently mvoh:'ed
in violenty{@arrels and controversies and he took a l.eadmg
part in thedispute with English mathematicians regarding the
invenfion of the calculus.

He had three sobs, each of whom became a professor of
~(ﬁé:thématics. Two of them, Nicolaus and Daniel, were pro-
fessors at the Academy of St. Petersburg founded by Catherine
I, though Nicolaus died young, and Daniel remained thn:zre
only a few years, returning to Basel in 1733 on account of z]}—
health. Johann’s youngest son, another Johann, succeeded his
father as Professor of Mathematics at Basel. The more famous
Daniel won no fewer than ten prizes offered by the French
Academy of Sciences, sharing one of them with his father,
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much to the latter’s resentment. He was delighted when g
stranger once asked him his name, and on his replying “I am
Daniel Bernoulli” to receive the incredulous and sarcastic
reply “And I am Isaac Newton!”

When Daniel Bernoulli resigned his professorship at St.
Petersburg, he was succeeded by his friend, Leonard Eﬂer,
one of the greatest mathematicians of the eighteentlr'gentury
and one of the greatest Switzerland has ever produeed:

Euler was born at Basel in 1707, the son of\a: Calvinistic
pastor who was also a mathematician, having studied under
Jakob Bernoulli. Unlike Jakob and Johann Bemnoulli, Euler

- Was encouraged and helped by his fathee)who eventually sent
him to study mathematics under Johann Bernoulli, although
he had at one time hoped that his\son would follow his own
example and become a Calvinighi¢ minister. The religious at-
mosphere in which Euler’s childhood was spent remained with
him all his Iife. The simplesunquestioning faith he learned asa
child never deserted him’otl’lroughout his seventy-seven years.
Maybe it was this f4ith that enabled him to accept blindness
with quiet resignation and unfaltering courage, It also made it
difficult for hith to get on well with people like Frederick the
Great and Violaire, as we shall see.

In 170%,%he year of Euler’s birth, the stage had been set for
great mathematical developments. Seventy years had elapsed
sm‘cg Descartes had introduced his revolutionary analytic
’gpoﬁetry; Europe had been given Leibniz’s calculus some

o\ thirty years previously; in trigonometry, all six “trigonometric
)" functions” had been invented (though they were not so called
‘until 1770} but were still generally regarded as lengths and not

as ratios, while the whole subject was still shackled by its
ancient geometric treatment. Although a mass of trigono-
metric knowledge existed, it was lacking co-ordination, anf}
its many scattered formulas had not been systematically de-
veloped and, co-related. -
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In the course of some fifty years, Euler completely freed
Descartes’ geometry from that of ancient Greece and made it
an independent branch of mathematical analysis; he sum-
marized everything that was known in his day about the
calculus, and opened up new trains of thought which were to
be more fully developed by his successors; he transformed

trigonometry from a geometric o an algebraic basis, as was\

mentioned in Chapter IV. - ~

Although the nineteenth and twentieth centuries haye seen
great developments, especially with regard to more rigorous
treatment in his work, yet the foundation of practically all
college algebra today can be traced back to Enler? His energy
and power of application were unbounded:/His output of
mathematical, scientific and astronomical works was SO
enormous that although much of it has hever been published,
more than forty volumes of his Wofk have been printed.

The mathematical world owésha debt of thanks to certain
far-sighted European monaichs for making it possible for
Euler to make so great %contribution to mathematics. Most
of the research work dazie in connection with mathematics and

E‘s\fnent of Europe during the eighteenth
ement offered by certain
d “academy” came to be
The first society of

scienice on the Go:
century was_dpé-to the encourag
academies. We have seen how the Wor
applied to. Plato’s school of philosophy. _socet
learneg weén to be established for research into physical science
wagthe “Academy of the Secrets of Nature,’- ’ foun.ded in
~N aples in 1560. This body, however, was short-.hved, since its
\pame suggested magic and the black arts to the ignorant world

of its day.
We have seen how Pascal, when a youth, was allow.ed to at-
tend meetings of mathematicians and scientists in Parnis. Th&s(;
meetings eventually developed into the French Academy o
Sciences, which not only provided salaries to enable mathe-
maticians and scientists to spend their time on research, but

Q
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also encouraged the development of mathematical and sg.
entific knowledge by offering prizes open to all competitors,
The French Academy of Sciences has been reconstituted
several times and has included tne most brilliant names i
French science and mathematics as well as those of many il
liant foreign members, such as Benjamin Franklin, who was
elected as an Associé Etranger in 1772. .

Euler was at different times associated with4wé European
academies, both of them formed on pluns thatsﬁad been drawn
up by Leibniz. In 1700, the Royal Acodemy of Sciences o
Berlin was founded by the Prussian king/Frederick I, though
it was not opened until 1711, whérEeibniz became ifs first
president. In 1724 Peter the Gread agreed to Leibniz's plans
for the Imperial Academv of"\?f}cmes at St. Peiershurg. The
sudden death of this Russigmonarch did not shelve the plan,
however, for the academy was duly brought into being by the
broad-minded empress\{in more senses than cne) Catherinel,
the former mistress and wif ¢, and now the widow of Peter the
Great. At bothRerlin and St. Petersburg, the academies pro-
vided ample salaries from state funds to enable disting“iSlfﬁd
scholars fo pirsue researches into mathematical and scient.lflﬁ
subject$and thus provided encouragement that was lacking
in Etopean universities of the cighteenth century, With' the
possible exception of the meager support offered to ordained

\(Bellows at Oxford and Cambridge.
A8V Aswehave seen, Enler was appointed to the Academy at 5t

Petersburg in 1733, and from that time onwards was able ©
devote himself to mathematical and scientific work. In 1.735
overwork brought on a fever which resulted in the foss of sigh
in his right eye, but fafled to slow down his enormous output
mathematical and scientific works. Three years later he wot
the prize offered by the French Academy of Sciences, andl?
1740 he shared the prize with Maclaurin and Daniel Bermot
In 1744, sickened by the political upheavals and execullol
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then prevalent in Russia, Euler accepted an invitation from
Frederick the Great to become a2 member of the Berlin Acad-
emy, where he remained for twenty-five years. His character
did not harmonize with the type of people—such as Voltaire—
Frederick attracted to his court, and in 1766, after years of
petty unpleasantness, Euler accepted an invitation by Cath-

erine the Great to return to St. Petersburg. The Russians hadh

always held Euler in high respect, even after he had goneto
Prussia in 1741. In 1760 Prussia had been engaged in the
Seven Years’ War with Russia, among other enemijes, While
Frederick was absent with his army at Breslau if\Stlesia. the
Russians invaded Prussia and captured Bertin\iit the course
of this campaign a farm at Charlottenburg,\some four miles
from Berlin, that belonged to Euler, waspilfaged by the Rus-
sian troops. On hearing the name of the owner of the farm, the
Russian general saw to it that Eulef\was immediately paid full
compensation, while the Russian Empress, Elizabeth, sent
him an additional sum of fousithousand crowns. In view of this
warmth of Russian feelifgstoward him, and the contrasting
coolness of Frederick ,tf;'ﬁ\(}reat and his court, it is not surpris-
ing that Euler accepted an invitation of Catherine the Great
in 1766 and rethohed to St. Petersburg Academy. Here he
spent the rentaining seventeen years of his life.

Very sodnrafter his return to the capital of the- czars, &
cataracﬁ{ofmed in his left eye. In spite of this ca.l.amjty be re-
mainddh calm and courageous and continued bis work. He

_actually dictated a book on elementary algebra in 1770. 'I.‘he
\ fﬁ'ﬁowing year his house was destroyed by fire and the blind
Euler was saved only by the devotion of 2 Swiss manservant

who carried hira from the burning buildiog. Shortly after this

exciting episode an operation on the cataract in his left eye
seemned to be successful, but Euler soon lapsed back. into com-

plete blindness. Even now his courage and energy n(;.\:I
faltered, he continued to dictate a vast store of mathematl

Q"
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papers to his sons. Many of these papers were published, long
after his death, in the official publication of the St. Petershurg
Academy.

Euler gave his approval of the use of the Greek letter  for
the number 3:14159 . . .  or the ratio between the circum-
ference and the diameter of a circle; and of ¢ to represent.the
incommensurable number 2:71828. . . ,or \

1 t 1 1 A

— N _ — '\

L+ 1 + 2.1 + 3.2.1 + 4.3.2.1 + d

which plays an essential part in higher mathbmatics. He was
the first to use the symbol f (x) for “functioh of x,” while, as we
shall see, he invented the symbol ¢ for 4/, Again, he was the
first mathematician to make a definite break away from
Napier’s idea of a logarithm as a conmection between a term of
an arithmetic progression and a térm of geometric progres-
sion. Instead, he systematically introduced the modern simple
concept based on exponents. He also established the custom of
using capital letters forthe angles of a triangle and their cor-
responding small lekters for the sides opposite those angles.
Thus: ) )

‘ L ,

Fra, 112

In addition to many works on higher mathematics which can-
not be discussed in non-technical language he wrote on the mo-
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tions of the moon, the planets and comets, and also compiled a
“nopular”” book on mechanics, astronomy and general science
for the niece of Frederick the Great, entitled Lelires d une
princesse & Allemagne sur quelques sujeis de Physique ¢ de
Philosophie. The fact that this book was written in French 1s
interesting; it reflects Frederick’s dislike of German, which he
considered to be the language of hoors. Frederick himself al-
ways wrote and spoke in French, and welcomed French(y
writers like Maupertuis and Voltaire at his court. O

Euler’s phenomenal memory stood him in good stead wiien
be became completely blind. He could repeat the Whole of
Virgil's deneid by heart and could make amazingly compli-
cated mathematical calculations even whep\b]jnd...]'ﬂ 1783
while playing with his grandchildren he gl@e}ed a stroke and
suddenty died at the age of seventy-scven:

Between 1600 and 1650, Desé%;‘ites, Fermat and Pascal
brought mathematical fame and glory o France; then came
England’s turn with Wallis, Barrow and Newton, while Ger-

many had her Leibniz. ‘S@itzerla.nd then caine to the fore with
the Bernoullis and Buler From the middle of the seventeenth
eighteenth, no great mathe-

century until the(mpiddle of the
matician arosgif France. Then Joseph Louis Lagrange (1730-
1813), one, 6fthe world’s greatest mathematicians, brought
fresh mathematical glory to France while his f.ellow-oountrg-
man Pierre Laplace (1 140-1827) also won enduring fame by his
,%Stféfnémical and mathematical work.

TLagrange was born at Turin in 1736, the eldest son of a well-

paid government official of French descent who had marxied

the daughter of a wealthy doctor but _wh? eventually becam:;
impoverished owing to his rash speculations. Lagrange use
to say that this loss of income fed to bis good for.t_une, since,
had he remained wealthy, he might not have stuched- math:::}:l
matics. Tt is highly improbable, however, whether a mind su
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as his could have avoided the insistent urge to satisfy its intel-
Tectual curiosity, no matter how hampered by wealth.

e had studied the elements of geometry while at the college
of Turin, but his interest in mathematics was not aroused until
he chanced to read an article by Halley, the friend of Newton,
in the Philosophical Transactions of the Royal Society of Lon:
don. In this way he became interested in the new analysis that
was transforming mathematics. Within two years? (e had
mastered it to such good effect that he was able to suggest to
Euler, then at the Berlin Academy, a more general method of
attacking “isoperimetrical” problems thaf, %had been de-
veloped at that time. Euler was greatly imptessed, and made
use of Lagrange’s suggestions, though Jre’abstained from pub-
lishing his further investigations, um‘ll Lagrange had made
public his improved methods, an Jindication of the generous
nature of this great mathematician,

In 1754 be was made Préféssor of Geometry at the Royal
School of Artillery at Furin and while holding this post he
founded a society tlat later became the Turin Academy of
Sciences. Tt was ix'the j journal of this society that he published
the methods he\f}ad communicated to Evler, which led to the
Calculus of, Yariations, a title suggested by Euler in 1766.
Between 1764 and 1788 Lagrange won five of the prizes offered
by thé/French Academy of Sciences by his applications of
ma\\rzhcmatlcs to astronomical problems. Meanwhile, in 1766 be

sutceeded Euler as director of mathematics at the Berlin
Academy, thanks to recommendations to Frederick the Great

made by D’Alembert, the French mathematician who was
anxious to avoid having to refuse the post, and Euler, who was
anxious to return to St. Petersburg.

Shortly after his arrival in Berlin, lLagrange married 2
distant relative of his family. He told D’Alembert that he was
led to take this step merely in order to have someone to look
after him. Fate decreed otherwise. Tt was he who was called on
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1o look after his wife, who became seriously ill, and despite all
her husband’s care and devotion, soon died.
" While in Berlin, Lagrange produced his greatest work, the
Mécanigue Analytique, in which he veduced the theory of the
mechanics of solids and fluids to general formulas by means of
which particular results could be obtained. He so completely
banished geometric ideas from the book that not one diagram,
appeared in it. S
Tn 1787, just after Frederick the Great’s death, Lagrange
resigned his post at Berlin and accepted an inviti}'eién to join
the French Academy of Sciences at Paris extended'to him by
Louis XVI, who had succeeded his grandfather, Louis XV,
three years previously. When Lagrange/arvived io Pails he

was royally welcomed by the {l1-fatedQuech Marie Antoinette;

he was given a fine apartment in the houvre, which was then a

royal palace; he was granted as large a salary as the one he had
enjoyed at Berlin. o .
Despite all these ﬁattqriﬁgf Lt tentions, be suddenly fel‘l intoa
deep mental depressio which caused bim to‘turn against his
beloved ma‘them;{@s and science with loa'thmg and dls.gust',
for two whole yparshe even refused to examine the first p}'mted
copy of his gg?ﬁ"M scanique Analylique. Strange to say, it wa;
the violenf\outbreak of the French Revolution that restore
the D’Qﬂi’of this peaceable, gentle man {0 normal once mor]i.
He §git deeply interested in the social upheaval, and although.
b\\ﬁn"g nominally a foreigner, he could have left Trance, he
¢\ ehose to remain and watch its progress on the spot. When the

"Reign of Terror swept over Paris he bitterly r.egret.ted hJsZ1 ie—
cision to remain in France, his gentle soul beIng sickened by

the cruelty and bloodshed let loose. He sepeatecly ’r’e;::f;ad:i‘i
himself for staying, remarking “Tu pas' voulu, . fou v
asked for it.”” Nevertheless, by remaiping it F_ra;{c; : :; a(;uled
great happiness. In 1792, the year b?fore LOU:; danghter of
to the guillotine, & yOung and beautiful girl, the davg
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the astronomer Lemonnier, moved at first by compassion for
the sad and lonely Lagrange, fel! in love with bim and insisted
on marrying him. Despite a disparity of nearly forty years
between their ages, the marriage proved a great success,
Lagrange becoming devoted to his adoring young wife.
Fortunately for France, and for mathematics, Lagrange(@as
not molested by any revolutionary tribunal. His salaxy was
continued, and, in addition, he was given well-paid oficial ap-
pointments. In 1793 he became president of a comniittee that
was appointed to carry on the work of a pre-Revolution com-
mission which had begun to inquire into the'néed ‘or a reform
in French weights and measures. This worlstad been sponsored
by the French Academy of Sciences, but'in 1793 the Academy
had been suppressed by the revolutionists. Even the new com-
mittee was later “purged” of those who were not considered
“worthy of confidence becauss\cf their hatred of kings, and of
their republican virtues.”. Among those found lacking in these
qualities were Laplace,\whom we shall meet shortly, and
Lavoisier, one of the founders of modern chemistry, who was
guillotined in 179@{,}hjs execution causing even the quiet La-
grange to exc}ﬁiﬁ in protest, “It only took a moment to cause
this head to'fall; maybe a hundred years will be insufficient to
produce®dne like it.”
Dgespi‘té the turmoil in France, the committee on weights
anQ\' measures continued its work under the guidance of
“I;.:agrange. Practically every district in France had its own
& :}.'Weights and measures; there were more than three hundred
) ways of measuring area alone, for example. The original com-
mission had decided to draw up entirely new measures, com-
mencing with a new and standard unit of length. It was agreed
to take a length equal to one ten-millionth of the distance from
the North Pole to the Equator as the unit of length. Although
a slight error made in calculating the length of the meridian
prevented this intention from being carried out exactly, the
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standard was duly fixed and was givén the name of meter.

By building up a table of length, etc. based on 10, an enormous

saving in time and labor was effected for all the nations that

eventually adopted this Metric System, since 10 is also the basis

of our number-scale. To learn all the essential measures, only

nine fundamental expressions need be memorized. They are:
milli- (“thousandth part”) .
centi- (“hundredth part”) . N\

deci- {“tenth part™) meter Y
Deka- (“ten’) graid
Hecto- (“bundred’} J diter
Kils- (“thousand”) 3
[Tt is wise to write the last three prefixes with capital letters
in order to avoid confusion when deci- ﬁt@d Deka- are abbrevi-
ated] Thus, tHe table of the measure ot length is as follows:
10 millimeters (mm.) =\ fentimeter {cm.)

10 cm. ;I;——;'i decimeter (dm.)
10 dm. 4y = 1 meter (m.)
10 m. A" =1 Dekameter (Dm.)
10 Dm. — { Hectometer (Hm.)
10 H, %87 ~ 1 Kilometer (Km.)
[Approximate éguivalents:
1 inch\&’2-540 cm.; 1 cm. -3937 inches

{ vird = 914390 m.; im. = 1-093614 yards
1atile = 1609 Ken.; 1 Km. = 6214 miles
N 8 Km. = 5 miles]
unit chosen was the grom, the
° Centigrade (about 39° Fahren-
in a cube whose internal dimen-
sions were each 1 cm., that is, the weight of 1 cubic centin-leter
of such water. For the table of weight; simply substitute
“gram” for “meter” in the table of length. Thus:

10 moilligrams (mg.) = 1 centigram (cg-)
10 cg. — 1 decigram (dg.)

,,\:'\’.Ft:)r weight measures, the
) weight of distilled water at 4
heit) that could be contained
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10dg, = 1gram (g.)

10g. = 1 Dekagram (Dg.)

10 Dg. = 1 Hectogram (Hg.)

10 Hg. = 1Kilogram (Kz.)
{Approximate equivalents: ~
1 0z (Avoirdupois) = 28-35g.; 1g. = 03527 oz
11b. = 4536Kg.; 1Kg. = 2:2046 Ib()
1ton =9072Kg.; 1Kg. =001t topns
1long ton = 1016Kg.;  1Kg. = 00098 long tons]

For square measure, 100 sq. mm, = 1 sq. coip100 sq. cm., =
1 sq. dm.; 100 sq. dm. = 1 sq. m. )

Ifa cubeis constructed with each edgesNein. long, its volume
will be 1 cu. em. (or 1 ¢.c.) and sinédeach edge will contain
10 mm., its volurme will also equa'l,\l’OOO cu. mm. Therefore
1000 cu. mm. = 1 c.c.; 1000 c.c{="1 cu. dm.; 1000 cu. dm. =
icu m, o

In dealing with the volime of a liquid or gas, the word
“liter” is used instead of*1 cubic decimeter.” So

1 liter = 1 cu. dm. = 1000 c.c,
Since 1 ¢.c. of {#@ter weighs 1 gram, 1 liter of water weighs 1
Kg. \
[Approximate equivalents
1 gallon’ = 3-786 liters; 1 liter = -264 gallons,
LJmiperial gallon (Canada) = 4-546 Iiters

~Miter = 22 Imperial gallons {Canada).]

Foreduce (for example) 8 Km. 3 Hm. 7 Dm. 4 m. 8 dm. 1 cm.,

(N2 mm. to millimeters, all that is necessary is to copy the figures

8374812 mm.
which is surely preferable to the time and labor required to
reduce corresponding units in our medieval length table.
Moreover, this metric length could instantly be written as
8374812 cm.
or 8374812 dm.
or 8374:812 m.
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or 837-4812 Dm,

or 83-74812 Hm,

or 8-374812 Km,
All that is necessary in each case is to write a decimal point
after reaching the unit in which the length is to be expressed.
The only caution necessary is to look out for any unit that may ,
have been omitted in the original expression, and to placg a
zero in place of such omitted unit. Thus: 5 Km. 4 m., reducedto
meters would equal 5004 m. [since 5 Km. 4 m, = 5Km. QHm.

0 Dm. 4 m.]. N
Another tremendous advantage in the metrigsystem is the
Simple connection between weight and volunde, ’For instance:
“What is the weight of a steel girder buil&\ipto a house, if the
volume of the girder is found to be 85,000.C.c. and the Specific
weight of the steel is 7-797" [“Spetific weight” or “Specific
gravity” indicates the number of\times any particular volume
of a substance is heavier than‘an equal volume of water]
Since 1 c.c, of water Weighé‘.tl’ gram, the weight of the girder
will be (85,000 X 7-79)g. or 85 X 779 Kg., or 66215 Kg.

It was mainly duesto Lagrange that more than thirty na-
tions today enjoy the enormous advantages of & system of
" weights and mieasures based on o decimal sysiem-
Anotherappointment held by Lagrange was that of Pro-
fossor of (Miuthematics at the Ecole Polytechnique, which was
found{ci\ih 1794, the year after the revolutionary decree that
ﬂhoﬁs}hed all the old French universitics and co%leges. Here he
(giined a great reputation asa teacher. Most of bis s.tudellts bad
{Vlittle or no mathematical background, but this dld not deter
Lagrange. Unlike many distinguished {nathen%atlcaans, he h;d
the gift of seeing problems from the pont of view of those who
did not have his own outstanding grasp of the subject. (ll‘on§e-
quently he was able to lead them up the casy and gr :'Ldua dSt:e;
way that leads right through elementary mathematics an '
into the calculus without their realizing that they were COVEr



360 MAKERS OF MATHEMATICS

ing ground usually regarded as abstruse and difficult. He in.
vented an approach to the calculus which avoided the use of
infinitesimals, being purely algebraic and depending on serics
of algebraic functions. The books in which these methods
were set out were called the Théorie des fonctions analytiques
(1797) and Legons sur le calcul des fonctions (1806). Although
Lagrange’s methods were soon abandoned as a meap§ of de-
veloping the calculus, his ideas led to important devélopments
in higher analysis. In the preface to the second-edition (Vol-
ume 1, 1811) of his Mécanique Analytique, i\n:which book he
again made use of infinitesimals, he said, “When the spirit of
the infinitesimal method has been propetly conceived and we
are convinced of the exactness of it8yTesults [through geo-
metric proofs] . .. . we may employ'\ihﬂnitely small quantities
as a sure and valuable means of sﬁoftenjﬂg and simplifying our
demonstrations,” '

Lagrange played a partifi ‘the devclopment of almaost every
branch of pure ma.thegna%iés. In addition to all his work on the
calculus, and, in pa ticular, in connection with the calculus of
variations, the calCulis of finite differences and the solution of
differential equations, he discovered a method of finding the
approximate ¥eots of an equation by means of continued frac-
tions, while,"in the theory of numbers he solved some of Fer-
mat’s tblems and discovered new ones. In addition to this
work\'nh pure mathematics, Lagrange played an important
PAFL in verifying Newton’s theory of universal gravitation. It
o Cwas in this connection that his contemporary Laplace made
V) much—unacknowledged—use of his work,

While preparing the revision of the second volume of his
Mécanique Analytique he exhausted his failing powers and died,
in 1813, at the age of seventy-seven. On his deathbed he de-
clared that death was neither painful nor disagreeable.

Pierre Laplace was born in humble dreurastances in Not-
mandy in 1749, Because of his brilliance as a schoolboy,
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wealthy residents near his home assisted his education. The
charactet of this brilliant and profound thinker lacks the at-
tractive qualities shown by Lagrange. As soon as his feet were
planted on the ladder of success, be did his utmost to ignore
and forget his humble birth; at one moment he would be de-
gradingly servile to those in power, at the next he would turn
against them when they could no longer advance bis worldly
intcrests. He was unpopular with other mathematicians<
with the exception of the gentle, generous Lagrange—sirice he
frequently made use of their work without acknowlédgment.
All the same, they were forced to admit his outstanding genius.
When eighteen years old, he had been given alétter of intro-
duction to D’Alembert, in Paris, but this well-known mathe-
matician paid no attention to the I fer> When, however,
Laplace sent him some notes on the'principles of mechanics,
D’Alembert at once sat up and tpok~ﬁotice. He replied, “You
have recommended yourself: iy support is your due.” On
D’Alembert’s recommendation, he was made a professor of
mathematics in the Bcole “Militaire of Paris, and from this
moment his future was assured. He proved himself to be a
master of the analy§i&0i his day, applying it to the verification
of Newton’s lasnof universal gravitation in connection with
the movements of the heavenly bodies. His book on this sub-
ject, thesMécanique Céleste is regarded as second t'n'ﬂy t0
Newtof’s Principio. Another book of his, the Exposition du
Systégre du Monde was a popular work in which a..nalytlc
methods were not used. So masterly was the style of this book

¢“\that in 1816 the author was chosen / f
Academy (not to be confused with the French Academy ©0

Sciences, of which Laplace became a member in 1785) whose

object was “the purification of the French Ia:nguage.”
%Ve have seenpho'w, during the Revolution, Laplace was

“purged” from the committee dealing with the reform in
weights and measures. This, howeves, Was only a temporary

a member of the French
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set-back in his career, He aspired to be a politican and had no
scruples in changing his views in the ever-varying political
atmosphere that surrounded the French Revelution and the
rise of Napoleon Bonaparte, who showered honors en him but
quickly threw him out of the post of Minister of the Interior
when he showed no capacity for administration, A

Certain researches made by Laplace have Ied to highly\im-
portant developments in the study of such subjects ad.gravi-
tation, electricity and hydrodynamies, the branch{of ‘science
that deals with the forces exerted by liquids. Hevalso wrote a
very profound book on the theory of probabﬂi\«t};ﬁ, 'which subject
he described as common sense expressed _in mathematical
language, O _

Toward the end of his life Laplace fied in quiet retirement
in a country house he owned. Here’hghied, loaded with honors,
in 1827. His death may be consid&red as marking the end of the
type of mathematics built upddithe seventeenth and eighteenth
centuries. Cavalieri, Despaffés, Wallis, Newton and Leibniz,
among others, had boldly'pushed on into the unexplored terri-
tory whose borders“k\a:d been reached by Archimedes, but into
which no mathemdtician had ventured to enter for seventeen
centuries. Bystheir brilliance and daring, these pioneers un-
earthed mathematical treasure undreamed of by the Greeks.

- The methods they employed would have shocked those Greeks

as tht;}t;s}ocked Bishop Berkeley and shock modern mathe-
mat&ia:ns who refuse to follow the advice given by D’Alembert
tofilis students when they found the logical difficulties of the

(eighteenth-century caleulus to be insurmountable. “Go
) ahead,” said D’Alembert,” and faith will come to you.” This

single sentence summarizes the eighteenth-century attitude
and i5 diametrically opposed to that of succeeding mathe-
maticians,

Equipped only with imperfect tools, the seventeenth- and
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eighteenth-century mathematicians nevertheless proceeded to
uncover secrets of nature which until their day had been hid-
den from man. They realized—if they paused to think about
it at all—that the methods they employed Jacked the rigorous
logical basis which had been the keynote—indeed, the razson
d’dtre—of Greek mathematics. But during these two centuries
the main object of mathematicians was the application of their
imperfect tools to the solution of some of the problems of the s
universe, rather than the search for a rigidly logical system of
reasoning. They therefore refused to be held up in theirthrill-
ing exploration by problems such as the exact megfing of the
infinitely great and the infinitely small; wheint served their
purpose an “infinitesimal” would be regardedds a fixed quan-
tity; at other times, as a variable quantitys They did not con-
cern themselves with the meaning df ¢continuity”; they did
not ask themselves whether they, thotght of number as being
continuous in the sense that time'scems to be continuol{s: one
instant merging imperceptilﬁljf into the next. Thf:y did not
allow such problems to stand in the way of their swift advance
into the unknown,,Décartes, for example, never pa_msed t::}
consider the implfeation of his assumption that an exact posi-
tion for any nugber can be indicated on a curve. He took it for

granted that.Ghere existed a one-to-oné correspondence be-

tween poirits on a line and the infinite pumber of number

values\between any two points on a number-scale and thus

did not concern himself with problems such as those hinted at

oh pages 232-239.

O Zé)eﬂg)re we glance at the Yife of Gauss, the greatest mathe-
matician of the nineteenth century, and one w:ho was re-
sponsible for directing the course of mathematical Inquiry mt:;
its present channels, we must take & loPk at the orgin :f.n‘
meaning of a mathematical concept which plays 11 mqit ;It]iflu
portant part in higher mathemacics. Unfortunately 1
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\as applied to directions; inertia
~for a property of matter by which it continues in either a state
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Iabors under an entirely misleading name given to it by a
philosopher of the seventeenth century. Mathematicians have
frequently been careless in the terms they have accepted or
invented-—witness sine (“bosom,” “curve”) for the length of
half a straight line in a circle; surd (“deaf”) for a number that
cannot be expressed as a ratio; algebra (“the re-union?™ in
place of the excellent, long-established and much mOore\expres-
sive Greek word arithmetike (“Science of numbers?2y édlculus
(“pebble”) for a branch of mathematics extremely remote
from all ideas of the abacus, on which pebbles,were sometimes
used; mathematical induction for a process ofréasoning that has

@

N Fre. 113
: ”\.Q v/

ng ¢ennection with its name; plus (“more”) and minus (“less”)

(“without power of motion”)

of xest or of umiform motion: and finally, real and imaginary
as applied to numbers.
The terms “real’” and “imaginary” numbers were invented

by Descartes. In order 4o understand what this term *‘im-
aginary” really indicates today it is easier to depart from the
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chronological order in which the concept arose and consider it
from a graphical point of view (which was first introduced in
1798 by a Nerwegian surveyor, Caspar Wessel, whose ideas
were published in the memoirs of the Royal Academy of Den-
mark in 1799).

First of all, we are going to invent a shorthand symbol, in >
order to introduce the general reader to a new mathematical, -
concept. The symbel will be “, which will mean the words
“undts on the number-scale that has been rolated in a couiler-
clockwise direction through 90°.” ON

Tn Figure 113, OA represents a line +3 units long, measured
from the origin O and lying along the x-axis apd'ineasured to
the right of the origin. 07\

Now let us represent “34” graphically,that is, let usdraw a
line equal to 3 units on the number-s¢ale that has been rotated
through 90°,

Y T

Fic. 114

3
We can now go a step further and say that JNHor 3(‘138
indicates that the operation indicated in Figure 114 15. to
performed twice. Se 3(Y)* will be shown graphically as:
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Similarly, 3(*)? will indi,géf,é that the operation has to be

performed three times, ttllgx’slf‘

® \‘

N

F16. 116

Finally, 3(*\)* will indicate that the operation has to be per-
formed four times, thus: '
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Now note that the line OA in Figure,}l'S\lies in the opposite
_dH'ECtion (measured from the origin 0)» to that of the line OA
in Figure 113. It follows that sinee the line OA. in Figure 113
represents +3, the line OA in{PFigure 115 represents -3, as
well as 3(\)% So 3(*\)? means the same thing as —3

1{‘\)fmns(ean5 the same thing as —1
~ 1 %{.imeans the same thing as +/—1
In other words, /1 means “J unit on the number-scale that
hos been rotatsddn o counter-clockwise direction through 90°.
Tn 1748 Euler' used the letter ¢ to stand for /1, just as we
made use\ﬁ}‘t'he symbol *. This choice of a letter to indicate
an Gﬁgsjti?’ian was unfortunate, as it is misleading for beginners.
It must always be remembered that § stands for the words
“hunit on the number-scale that has been rotated in a counter-
\C'iockwise direction through 90°.”" If the line QA in each of
Figures 114-117 had been made 1 unit in length instead of 3

units, it would be secn that
i = /=1 (from Figure114)
it = ~1 {from Figure 115)
# = —i (since OA in Figure 116 lies
tion to OA in Figure 114)

in the opposite direc-
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# = 1 (since OA in Figure 117 lies in the same position as
OA in Figure 113).
Since further rotations of the number-scale through 90° would
bring OA into the same four successive positions over and over
again, it follows that

B=

= —1 N
‘? — —. N

’ ¢ O
#f= 1 A\

and so on, in endless repetitions of 7, — 1, —7, A8 7

We have said that the symbol § for o/~ fis unfortunate;
equally unfortunate is the name given to mintbers like /1,
which were called “imaginaries” by Désa¥tes. Since it is not
possible to find the square root of asttegative quantity, Des-
cartes described +/—2, for exa.mplé} 4s an magingry number,
But +/~2 is no more imaginarythin is —2. We saw in Chapter
IIT that in the third centuryeDiophantus considered that the
equation 4x + 20 = 4, whese root is —4, was “absurd,” since
in his day nobody hadcenceived of the possibility of such a
thing as a “numberless than zero. Even Fibonacdi, in the
early thjrteenth,@éﬁtury, ignared negative numbers, except in
an equation conpected with gains and Josses, when, as we saw,
he interpretédithe negative root as indicating a loss instead of a
gain. ThisWwas the first step toward the admission of negative
numbersas full members of the mathematical family. By the
thp{c}f Cardan (the sixteenth century) negative roots of equa-
Jons had come to be recognized, for in his Ars I, agna of 1545

¢ ke deals with them. Thanks to the work of men like Viets,

<\; "~ Napier, Fermat and Descartes, the idea of negative numbers

became fully accepted as judicating some measurement taken

in the opposite direction to that in which a positive number

was taken. Nowadays, a negative number at once suggests a

direction to our minds; as soon as we have become familiar

with 4, or /—T, this symbol suggests the rotation of the num-
ber-scale through an angle of 90°.



LEIBNIZ, GAUSS AND OTHERS 369

It took many centuries, however, for this concept to grow in
mep’s minds. In 1583, Simon Stevin of Bruges, whom we met
n Chapter V, admitted that the subject was not mastered.
About a century later Wallis almeost hit on a graphical explana-
ion of +/—1600, though nothing came of it, while Leibniz
showed that it was possible to perform certain algebraic opera~
ions with the numbers that Descartes had dismissed as “im-, { )\
ginaries.” By the early cighteenth century, Euvler and I¥€)
Moivre (whom we shall shortly meet) were working omihe
subject, and applying it to trigonometry. In 1832 Gé&nss in-
vented the term “complex number” for an expresstofithat con-
jists of a so-called “real” pumber and a so-called\“imaginary”
wumber, for example: a + bi. Ever since the time of Des-
-artes, the terms “real” and “hnagina.ryj’.'pﬁmhers have been
ssed in mathematics, despite their misleading associations.
‘Imaginary’”’ numbers azre no moredfiaginary than are “real”,
numbers. Any “real” number, g,uéh” as 5, can be expressed as
the complex number 5+ bi, "t being understood that b is
rere equal to zero. So all ofinnumbers may be comnected as in
he following table: \\ )

N

\ COMPLEX NUMBERS
70 ‘
O\
A J
A\ REAL NUMBERS «MAGINARY" NUMBERS

SN
\ 3
ATIONAL NUMBERS JRRATIONAL NUMBERS

INTEGERS

(& FRACTIONS)

Fic. 118
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Let us see how a complex number may be represented
graphically. Here we meet with another mathematical con-
cept, that of a vector. A vector is a straight line whose length
répresents some magnitude (in science, a pull, or push, or
some muscular exertion, or its equivalent) and whose direction
represents the direction in which such pull, etc., acts. T fwo
forces act together upon the same point on a body (', single
force can be found that could produce the same effeet 6n the
body as the two forces acting together. This shlglffgféfce, known
as the resuliant of the two component forces, may'be represented
by a vector which will be the diagonal «of the parallelogram
having the component forces as adjacent sides. Thus:

¢ Component
’\\ ) yector
Fic. 119

Lq:t\'t;l} now see how a complex number may be represented
gra@bjb&ﬂy by a vector.

1o Cartesian cosrdinates (the system invented by Des-

. (\cartes) we used an x-axis and a y-axis in order to determine the

\“: ~ position of “real” numbers. Now in a complex number we have

two things, a real number and a number containing 7. We can

still use the familiar x-axis for measuring values of the real-

number part, but we must have a new axis for the § part of the

complex number. So we erect this new axis at the origin of the

familiar cosrdinate axes, but at right angles to the plane of those
azxes. Thus: '
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- O\
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O
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Fic. 120

A%/

We nowmake use of the plane that contains the old x-axis
and the(jiew i-axis in order to represent complex numbers

graPhi y. Positive
upward from the origin,

origin. Since 4 and —¢ are not numbers on the

Scale these --- and — signs d

n * *
zero.” These merely indicate measurements In

tions.

The complex number 3
vector OP (Figure 121), w
ponents 3 and 4z.

o not indicate “‘greater

values of 7 are measured on the z-axis

negative values downward from the
“yeal” number-

or less than

opposite direc-

44 would be represented by the

hich is the resultant of the com-
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] £
i axis

0
X axis 0

o — 6i

\\ o

L >

& Fic., 121

In‘practice it is usual to show only the planc of the x-axis

[n
,.an\i"iﬂa.xis.]

1% More generally, the vector OP in Figure 122 represents the

N\

e\

\

complex number a + bi, where a stands for the number of
z-units and b for the number of  units involved.

Note that the complex number is not represcnted by the
lengih of the vector OP, but by the length and direction of that
vector, The length of the vector will be seen to be 4/a% + b4
from the theorem of Pythagoras. This is known as the absolute
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value of the complex number, and may be written as [a -+ bi] =

VET R
It is now a simple matter to express a complex number in
polar or trigonomeiric form (see pages 345, 346).

i-axis
“/
4

O
= a"
<.
/ o
/3
s
o)
N A
w

x-axls a \
o\\,/

{w}“l"*\m. 122
\\\./
The angle @ is called the amplitude of the complex number,
OP, or 1, the ma’éie}ius. It follows that -

23 a = roosf
O~ b = rsin6[. bi = risinf]
;&\ ~ a - bi = rcosf + risinf
{\,}5. = r{cosf + isinf)

‘{H}Ch’ is sometimes abbreviated (Figure 123) as follows:
a + bi = rcisé, -
[the right hand side standing for r(cosf 4- i sinB)}. N
Suppose we wish to write the complex pumber 3 4- 44 n

polar form: Herea = 3,b =4
sr[= 42+ bl = 5
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P P

-

o . 6\5%

b \
0 N
- N\
X-axis 0 a AN
{0
>
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Now tan 8 = l—)
a

=% Nasss

s

. 8 = 528" approximately (from trigonometric

tables). O
7 3+ 44 ="Bfcos 52°8 + i sin 52°8)

The advantage of the polar form lies in the ease with which
multiplication, division and the extraction of roots involving
compleX numbers may be performed when the complex num-

bers/are thus expressed. In this connection, every textbook on

. :.f'the subject today makes use of De Moivre’s Theorem and thus
¢\ Teminds us of 2 mathematician who played an essential part

in developing the study of complex numbers, though they were
not so called in his day.

Abraham De Moivre was born at Vitry in France in 1667.
His parents were French Protestants and were compelled to
leave France on the revocation of the Edict of Nantes in 1685.
The edict had been issued in 1598 by Henry IV, giving grudg-
ing freedom of worship and certain civil rights to the Hugue-
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nots or French Protestants. In 1685, Louis XIV, under the
influence of Madame de Maintenon, revoked the edict and
thus drove out many of the steadiest and most skilliul workers
in his country. In London, De Moivre gave lessons in rathe-
matics. It is said that he secured a copy of Newton's Principis,
tore out the pages, so as to be able to carry one or two of them
in his pocket, and studied the book in spare moments. In any
case, he and Newton became very friendly, and De Moiyrey,
was one of the mathematicians chosen by the Royal Society;to
investigate the dispute between the followers of Newton and
Leibniz. De Moivre revolutionized the higher brancltes of
trigonometry by the theorem we are about to discuss, but his
greatest fame lies in his treatment of probability. He was a
member of the Royal Society and also p.’fo\eign member of
both the French Academy of Sciences-andithe Berlin Academy
of Sciences. Toward the end of hisdong life—he lived to be
eight-seven-—he fell into povertyl and had to support h}mself
by solving questions on gamed'of chance at 2 tavern in St.
Martin’s Lane. Finally, he sank into a state of lethargy, sleep-
ing longer every night.(Fhe last time he went to bed he slept
for more than twenty-four hours and then died in his sleep.
Before we consider De Moivre’s Theorent, let us see the result
of multiplyingtwo complex numbers together, both expressed

in polar form,
II-)-zt 1(6;3191 + i sin f1); 12{cos 2 + i 5in 82) be the numbers
that dve'fo be multiplied togethltir. ,
By ordinary algebraic multip ication we get: o
< "fx;r\é(idsﬂl co;g; —fi sin 6, cosér + éoor.sﬂl sinﬁg;l- 2sinfy sind;
Rearranging the terms, and remembe-rmg that 2 = —1, we E&;!}:
117§ (cos 6 cos By — sinfy sinfe) + ¢ (sin 6.1 cosfly + cosr sin S
From the formula connected with Figure 5.1 {page laa{,
cos 8, cos §2 — sin 9; sin By = Co3 A + 63),. while by an a1n48;
ogous formula to the one connected with Figure 50 (page

sin 31 cOs 83 + (30531 Siﬂ 92 = §in (31 + 32)
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So our product may be written as

rirzfcos(®; + f2) + ¢ sin(®y + 6)]
In other words, the result of multiplying two complex numbers
(in polar form) is another complex number whose modulus is the
product of the two original moduli, and whose emplitude is the
sum of the two original amplitudes. Tt is therefore very ,s{mple
to multiply, for example,5(cos 10° + 7 sin 10°) and 7(co$20° +-
¢ sin 20°), the product being the complex number whose
modulus is 35 and whose amplitude is 30°, namely;

35(cos 30° + 7 sin 30°)

Now suppose we wished to square thé&)complex number
r{cos 8 + i sin 6). To square a number iS’:equivalent to multi-
plying the number by itself. So the answer will be

r*(cos 28 - { §n"26)
Similarly, to cube r(cos 8 +.izsin #) we simply write down
r*(cos 307 sin 36) o
De Moivre’s Theorem states’ these last two facts in general
form: N\
[r{cos 0 + isi1 )" = r*(cos n 6§ + 5 sin n 0)
This is the thgq{ém that lies at the root of much higher
trigonometry., .

It must, “remembered that until the early nineteenth
century,a geometrical interpretation of “imaginary’” numbers
had net\been discovered. Consequently, mathematicians such
as'EjLﬂéi‘ and De Moivre had merely the knowledge that these
lij(sierious “imaginaries,” which obviously were not connected
R \with ordinary magnitudes as were “real” numbers, were yet
" able to be made use of in manipulations that led to concrete
results. Moreover, they began to realize that the use of “im-
aginaries” enabled all algebraic equations to fit in with what is
now known as the “fundamental theorem” of algebra, namely,
that if an equation is of the nth. degree, it will have # roots.
Thus, the equation 3x — 5 = 9 will have one root; the equa-
tion x2+ 3x+ 1 =0 will have fwo roots; the equation
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x* = 1 will have three roots, and so on. What will be the three
roots of the equation x® = 17
We will write 1 as the complex number 1 + (¢ and then
transform this expression into its polar form
1(cos 0° -+ ¢ sin 0°). .
Let the required cube roots be of the form r(cos® + i sin 8).
Then 1(cos 0° + i sin 0" = [r{cos 6 + i sin )]

. = r*{cos 30 + 7 sin 36) <\
Equating moduli, we get r = 1 . O
Equating amplitudes, we get 3¢ = 0°, or 360°, or 720%etc,

& 8= 0° or 120°, or 240° R4

». r{cos § - £ sin§) = 1{cos 0° + 4 sin 0°)
~ 10+ 0 =1
V3
or 1(cos 120° -+ i sin 120°) = 1(>E+ -—-2—5) (@)

o) 1 .
or 1(cos 240° - i sin 2402} = 1(—5 5 i). (3

Simplifying (2) and (3), it wilt be seen that the cube roats of 1,
or, in other words, the 16ots of the equation x* = 1, are ?,
(—~14+/34)and § -{‘1."—- +/3 9). If any one of these roots is
cubed, it will be seén that the result is 1. Thus:
21| V3 .)s 1 V3,
{ 1} = —=———
9.\ 2 2

~C _
A1 V3N L ':éé-)=£ 3_
’3’:&5_7’)(_ vt i) =ats™?
It\IS very easy to represent any root of 1 graphically. USI:llg
ﬁe’: symbolism “r-cis 8" [for r(cos 8 + i sin g)] we may write
1 = 1(cis 0%), or 1(cis 360°), or 1(01'5 720‘:)
o AT = 1(dis 0°), or 1(cis 120°), or 1{cis 240 ).
These three roots will be represented graphically by vectors,
cach of which is 1 unit in jength (since r= 1) and having
angles which successively differ by 120°. Thus:
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~\F The three roofe of x*<1

Y Pre 124

“,\

It will be Bq%n that the ends of these vectors lie on a circle
whose radis is 1 unit, and that if those ends were joined they
would bg’ the vertices of an equilateral triangle inscribed in the

circlén
\’ﬁfow suppose we wish to represent the twelfth-roots of 1°
"g}aphlca.]ly
\ = 1(cis 0°), or 1{cis 360°), or 1(cis 720°), or

,..\

\;

1(cis 1080°}, etc.
o A1 = 1(cis 0°), or 1{cis 30°), or 1(cis 60°), or
1{cis 90°), etc.
So these twelve roots will be represented by vectors, each of
which is 1 unit in length, and having angles which successively
differ by 30°. Thus:
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1 cis 270°

A3 {lThe twelve roots of X =1

Eie. 125
Tt will be seen that the ends of these vectors lie on a circle

) 3

whose radius is 1 nit, and that they are the vertices of &
regular inscribed 1 -sided figure.

The firstpidthematician who really developed the geometric
concept of eomplex numbers—and gave them this name, as
we haye seen—was Gauss, the greatest of all German mathe-
maticians.
_~Karl Frederick Gauss was born in 1777 at Brupswick. He

\m \came of a family which for generations had been very humble
folk—gardeners, stonecutters, bricklayers. Tt was only by a
fortunate chance that Gauss himself did not become a brick-
layer. While at his first school he showed an amazing aptitude

for figures, so much 0 that by the time he was ten his school-
master admitted he could teach him 1o more arithmetic. He
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then commenced to study algebra and eventually his youthful
genius was brought to the notice of the ruling Duke of Bruns-
wick, who saw to it that Gauss had an excellent education,
In 1792, when fifteen years old, Gauss, who had already ac-
quired a sound knowledge of Latin as well as the rudiments of
‘mathematics, matriculated at the Caroline College in: Bruns-
wick, and, thanks to the generous wisdom of the Duke, was
able to remain there until he was eighteen. By thattimehe had
so thoroughly mastered the works of mathematicidns such as
Euler, Lagrange and Newton that his professors admitted
that his knowledge was as great as theirs. Gauss then studied
mathematics at Gottingen and made sayeral important dis-
coveries in connection with the theaty’of numbers, a branch
of mathematics in which he alwaysiexcelled. He left Gottingen
in 1798 and earned a meager liying for a time in Brunswick as
a mathematical tutor. Durigg this period (in 1801) he pub-
lished a book entitled Disgyitiones Arithmeticae, which was to
revolutionize the study-of the theory of numbers and was to
lead to a new schogh.of writers on this subject. Gauss began
these researches atan early age, and his book became a stand-
ard work on thésﬁbject. He always held this branch of mathe-
matics in kigh esteem and affection. Although apparently
simple, yétit is actually highly abstruse and difficult. “Mathe-
matics;?he would declare, “is the queen of the sciences, and
ithmeétic is the queen of mathematics.” [In his day, as we
AW, “arithmetic” meant “The Science of Numbers,” not the
irodern simple number-reckoning.]
" Gauss also made numerous astronomical discoveries and
calculations during this early period of his life. These brought
him widespread fame and resulted in two attractive offers be-
ing made to him in 1807: one, a chair of mathematics at St.
Petersburg, the other the joint post of professor of astronomy
and director of a new observatory at Gottingen. Gauss ac-
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cepted the latter post, and remained at Géttingen until his
death forty-eight years later.

Although the greater part of his life was spent in astronomi-
cal work which brought about great improvements in practical
astronomy, Gauss won lasting fame for his scientific researches
into magnetism and electricity. In this connection he demon-
strated the possibility of sending telegraphic signals frofm,
Géttingen to a neighboring town, and thus played a part'in
developing the ideas on which such famous scientists.as Gal-
vani (1737-1798), Volta (1745-1827) and Ampére (1775-1836)
had been working. o O

In the midst of all this astronomical and seientific work he
yet found time to study practically evéry’ branch of pure
mathematics, proving himself a masterof them all. Mention
has already been made of his work)in connection with the
theory of numbers, and we havefioted his interest in the treat-
ment of “imaginaries” and hig'development of the St‘l:ld}' of
complex numbers. In adgﬁtidn to all this work on the discrete
(“separate,” “individudl®) numbers of the number-scale he
was a master of the@athematics of motion and growth that
had been developeh\%y Newton and Leibniz, so much so that he
shares with Lagrange and Laplace a foremost place among the
founders of Tnodern mathematical analysis.

He wasone of the first to study what is kn?wn as the non-
Euc};&aﬂ geometry that is now associated 'vnth.the name of
Nikolas Ivanovitch Lobachevsky of the University of Kazan

~ :(ﬁg&l 856). As a simple illustration of the dlﬁ:erence between
JEudidean and non-Euclidean geometry, consider the case of
two lines on a plane surface, each of which is at an angle of 90
with another line. Those two lines would be said to be parallel,
and they would never meet, no matter how far tloxe_y were :;—
tended in eitber direction. Now consider two meroldla.ns of the
earth. Each meets the equator at an angle of 90°, but never-
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theless, they meet at two places—the North Pole and the
South Pole. Euclid’s geometry is based on certain assumptions,
or postulates, connected with figures on a plane surface. One
of these postulates has to do with parallel lines on such a sur-
face. When dealing with points which are not all on the/same
plane, it is possible to conceive of different postulates which
lead to conclusions that are different from those of\'Euchdea.n
geometry. One such system is that of Lobachevsky, another is
that of Riemann, who for a short time was apilpil of Gauss.
All three systems—those of Lobachevsky, ‘Euclid and Rie-
mann—were shown by Felix Klein (1849-1925) to be three
different aspects of a more generat km{i of geamietry.

Gauss was the last of the great{rhathematicians who were
able to handle every branch of mathematics. Since his day, so
widely and rapidly has the, sub]ect spread that no one mind
can hope to grasp the whole vast field it now covers. The
nineteenth and twentlcth centuries—have seen thousands of
mathematicians who\have limited their attention to certain
highly specializedbranches of pure and applied mathematics.
Not only hav‘e\‘they made p0351ble the tremendous develop-
ments that(have taken place in all branches of science, but
they have\pohqhed and sharpened the magnificent mathemati-
cal toois that were created during the sixteenth and seven-
tethh centuries.

{One of the greatest British mathematicians of the nineteenth
century, Professor Arthur Cayley of Cambridge University,

"N in his inaugural address to the British Association said, “It is

difficult to give an idea of the vast extent of modern mathe-
matics. . .extent crowded with beautiful detail. . .a tract of
beautiful country seen at first in the distance, but which will
bear to be rambled through and studied in every detail of hill-
side and valley, stream, rock, wood, and flower. But, as for
everything else, so for a mathematical theory, beauty can be
perceived but not explained.”
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If it was difficult to give an idea of the vast extent of mathe-
matics when these words were spoken (some sixty years ago),
it would be impossible to do so today in a book such as this.
Apart from the impossibility of explaining in non-technical
language the often highly technical and abstruse develop-
ments that have occurred, the ground to be covered is so ex-
tensive that even a brief summary of the mathematical)
achievements since the time of Gauss would occupy hundftdé
of pages. Moreover, without an understanding of the vast
developments that have occurred in scientific thoughbit would
be impossible to grasp the significance of mathematical ap-
plications to the study of such subjects as electricity, light,
heat, sound, elasticity, dynamics and fuid/inotion. In all these
subjects prodigious advances have peeﬁ made, thanks pri-
marily to the pioneer work of the sixteenth- and seventeenth-
century mathematicians who dey&loped the branch of mathe-
matics that deals with the infigité. Boldly advancing where the
Greeks had feared to tread, they obtained results by methods
that were often open €0 question. Since their days, those
methods have beepdextended, sharpened and refined by the
application of ﬁ;&-}naﬁon coupled with rigorous logical
rch has been made into what may be

feasoning. IJeep Sea
described ,as./the philosophy of ‘mathematics, the closest
| to the subject matter but also

scrutirg(:behlg paid not only
to thé concepts that lie behind that subject matter. Many
modem developments of the subject are so abstruse and so re-
life that it is difficult to believe they can
cation. But yet the abstraction of

(“note from common
ever have any practical appli
e commenplace of tomorrow.
«Mathematics the science

today has a habit of becoming th

No longer is Aristotle’s definition, na
of quantity,” acceptable to mathematicians. In 1903, Bertr-a.nd
Russell defined pure mathematics as consisting of C}educnons
“by logical principles from logical prineipies,”. while on an-
other occasion he emphasized the abstract notions ol which

Q)
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much of modern mathematics is based by the—at first glance—
startling statement that “Mathematics is the subject in which
we never know what we are talking about nor whether what
we are saying is true.”

The average man, however, is not concerned with or, inter-
ested in these abstruse abstractions. In due course, some of
them will doubtless play their part in directing tjfé’ future
course of mathematics, but the average man has heither the
time nor the requisite technical knowledge for.their study. He
can, however, without studying these abstract'matters, grasp
the vital part that mathematics has playediin the development
of twentieth-century civilization, and Jconstantly plays in
maintaining that civilization. L&

He can see the age-long storynof mankind reflected in the
fluctuating growth of matheniatical development: great
mathematical achievements'cdinciding with the four centuries
Wwhen Greek civilization was at its height, and again when the
Renaissance ushered jn, the tremendous outburst of intellectual
activity and independent thought that has characterized the
past five centufies. On the other hand, the mental stagnation
and paralysig'of initiative in intellectual matters that marked
the Dark aad Middle Ages will be found to be reflected in the
great mathematical depression that set in soon after the death
of Archimedes and continued until the sixteenth century. Just
as‘the sales-chart of an established and well-conducted busi-

-3ess reflects the varying economic and social conditions of the

“\“community, so too, the fuctuations in mankind’s intellectual

activities are reflected with unequalled clarity in the rise and
fall of mathematical development.

It requires no mathematical skill or background to follow
the story of the growth of basic mathematical concepts from
iddas that were essentially simple and commonplace, and to
grasp the close co-ordination that exists between the various
branches of the subject. '
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Not only does mathematics open the door of the treasure
house of modern science, with all its fabulous material riches
and power; it offers us a key to a better understanding of the
laws that govern the mysterious universe in which we find our-
selves. Even more than all these things, it offers to all thought-
$ul men and women—not merely to those endowed with great {
mathematical aptitude, but to all of average intelligence—a
share in the serenity of mind that Wordsworth associated-with
the subject A
«  that held acquaintance with the stars 3

And wedded soul to soul in purest.bond”
Of reason, undisturbed by space Ot time.”

Tt is hoped that the story of mthemqtis%*that has been told
in this book will encourage non-mathematical readers to share
the fascination of the subject as upfolded in more extensive
and more technical works. For ,thfibeneﬁt of those who wish to
dip more deeply into the storg of mathematics, a list of books
is appended, from which a Selection may be made according to

the topics that appealte the reader.

\Y;



BOOKS FOR FURTHER READING

T. E. Peet: The Rhind Mathematical Papyrus (University Press of
Liverpool, Ftd.)
Sir Thomas Heath: Fuclid (Cambridge University Press) A
The Copernicus of Antiquity (Aristarchus of Samog) )
{S.P.C.K., London) . \,
Archimedes (S.P.C.K., London) N
Diophantus of 4lexandn'a {Cambridge Univ?E{tx'Press)
D. E. Smith : Mathematics (in the series “Our Delbt, %0 Greece and
Rome” ; {Harrap & Co.. Ltd.) ) \\
T. Dantzig : Number, the Language of Scz'qy@:%
L. C. Karpinski: Robert of Chester's :Izt;tiﬁ Translation of al-
Khowarizmi (Oxford University Brésé)
Salvador de Madariaga: Cﬁﬁsﬁfop}m Columbus (Hodder &
Stoughton, Litd.) N
C. G. Knott: Napier M éhorial Volume (Longmans, Green & Co}
H. Macpherson: M%;\ée‘fs’ of Astronomy {Oxford; Clarendon Press)
E. S Ha.ldane;.l?;mams (J. Mursay, Londen)
D. E. Smi &\ M. L. Latham: Descaries {English translation:
Open/Ggurt Publishing Co., La Salle, Iilinois, U.S.A)

I M.,C%ﬂ?:l: Geometrical Lectures of Isaac Barrow (Open Court
. Pybiishing Co) _
"Siibavid Brewster: Memoirs of the Life, Writings and Dis-
' coveries of Sir Isaac Newion (T. Constable & Co., Edinburgh,

1855)

A. De Morgan: Essays on the Life and
by P. E. B. Jourdain, Open Court Publis
U.S.A)

S. Brodetsky: Sir Isaac Newlon {Methuen & Co.)
387

en & Unwin, Ltd.}

Work of Newfon {edited
hing Co., La Salte, Illinois,



388 MAKERS OF MATHEMATICS

J- M. Child: The Early Mathematical M anuscripts of Leibnity
{Open Court Publishing Co,)

A. N. Whitehead : An Introduction to Mathematics (Butterworth
& Co., Ltd.)

J. WA, Young: M onographs on Modern Mathematics {Long-
mans, Green & Co.) ™\
Fundamental Concepts of Algebra and Geometry
(Macmillan) .\"'\
G. Cantor: Contributions to the Foundations of Fhe Theory of

Transfinite Numbeys {Open Court Publisking) Co., La Salle,
THinets, 11.5.A.) +52)

~
Sir T. Percy Nunn: The Teaching bf Algebra (Longmans,
Greenr & Co.)

AN
B. Russell: Principles of M. athem?i}s (Allen & Unwin, Ltd,)

B. Russell & A. N. Whiteheats Principia Mathematica (Cam-
bridge University Press) _\ "

G. H. Hardy: Pure M({tﬂ%ﬂtfcs (Cambridge University Press)

E. T, Bell: Men of Mathematics (Stories of great mathematicians
from 1600 to IQQO: (Gollancz, Ltd,)

N
REFERENCE GQKS ON THE HKISTORY OF MATREMATICS:

Sir Thom'as Heath: History of Greek Mathematics, 2 Vols.
(Ozford;*Clarendon Press)

F.C{Cajori: A H. istory of Mathematics (Macmilian)

D. % Smith: History of Mathematics, 2 Vols. (Ginn & Co.)

&?}EJ R.iIBe)r.Ll: A Short Account of the History of Mathematics
& acwillan

A
'"\: "/ MATHEM.A'I‘ICAI. BOOKS IN ENGLISH TGO BE FOUND IN THE RARE-
\ 4 BOOK DEPARTMENT OF MANY LARGE PUBLIC LIBRARIES:

Recorde: Grounde of Artes (“Ground of Arts” in 1646 edition)
Baker: Rule of falsehoode or false position (1580)

WI('iI%hﬁt}: A description of the Admirable Table of logarithms
1

Coulson: Method of Flugions and Infinite Series (1736)



INDEX



O

Index A (Historical)

[For mathematical references see Index B, p. 395]

Academy (French), 361
(Plato), 44, 45, 349
of Sciences (Berlin), 340, 350,
351, 334,-355, 373, 380
of Sciences (French), 224,
341, 347, 349, 350, 354,
355, 375
of Sciences (St. Petersburg),
341, 347, 350, 351
Acidlson 321
Alexander the Great, 46, 52
Alexandria (see Math Inﬂex)
algebrista, 83
Amenemhat IT1, 13\
Ampere, 381 N
Amnalyst, The (Bbrkeley), 321
Angles and Baxons, 85
Anne (Queen), 323
Apocalypse, 171
Ara.bs' (see Math. Index)
~Aritotle, 44, 49, 109, 110, 114,
194, 195, 199 200, 235,
236, 249, 383
Arnauvid, 230
Artemis, 63
Asoka, 22
Astrology, 90, 203
Athens, 44
Atiila, 88

4

O\
7NN “
August, 116 L
Augustine (Sa.mt)\QZ?'
Augustus {Caegar), 116

N

D
_ Babylon@ {(see Math. Index)

Barbermi (Cardinal and Pope),
\200

.;Bgisle University, 342, 348
“bematist, 52

N

Benevento, Battle of, 248
Bologna, 240

Brescia, 88

Brewster, Sir David, 274, 280
Brunswick, Duke of, 380
Byzantium (see Constantinople)

Cambridge University, 94, 274,
[Ch. VII, passim], 350, 382

Canopus, 146
carpenter’s square, 28
Cartesians, 207
Carthage, 63
Catherine I, 341, 347, 350
Catherine the Great, 351
Chatles I, 253, 275

11, 140

of Anjou, 248
Charterhouse School, 283
Christina (of Sweden), 221
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chronometer prizes, 139

Cicere, 62

Clermont Ferrand, 223, 227

Columbus, 87

Constantine (Emperor), 85

Constantinople, 47, 63, 85, 87,
244, 248

Copenhagen University, 202

Cromwell, Oliver, 281

Crotona, 38

cuneiform writing, &

d’Aiguillon, Madame, 226
de Maintenon, Madame, 375
de Méré, Chevalier, 227
democracy, 44

Denmark, 202

Edict of Nantes, 374 AN
Edinburgh, 169, 170, 188,323
Edward VI, 01, 94 9
Egyptians (see Math.“Index)
Elector Palatine, 167

Elizabeth (Emgﬁass of Russia),

351 a\

. Elizabeth (Queen), 47

epigram,J7
Euclidef Megara (philosopher),
¢ ..\ '4:?

Fire of London, 275
» Florence, 200

Franklin, Benjamin, 350
Franks, 85, 88

Frederick 11 {of Denmark), 202
Frederick the Great, 348, 351

Galvani, 381
George 1, 303, 341

Golden Age of Greece, 24, [Ch.

11, T11, passim], 384

Goths, 24, 85

Géttingen, 380

grammar schoo! (England), 280
Grantham, 276, 280

Griitz, 202

Greck Anthology, 77, 19
Gregory XIII (Pope), 116\
Gresham College, 187, 190, 284
Grotius, 221 (\)

| Gustavus Adolphis; 221
| Hanover, Electot of, 323, 341

Hanseatic‘League, 202

Harun al\Rashid, 47

Henry, VIII, 274

H\én\ry (Prince, of Portugal) (see
Math. Index)

1 Herodotus, 33, 115

Hiero I1, 56-58, 63
Hieronymus, 63

Holy Roman Empire, 340
Huguenots (see Protestants)
Huns, 83

Hveen, 202

India, 15, 22-24 (see also
“Hindu,” Math. Index)
Inquisition, 111, 200

JTames I, 203

Jansen (-ites), 226, 227, 230
Jukius (Caesar), 116

July, 116

Lavoisier, 356
Leipsig, 316

Lincoln, Abraham, $#4
Lippershay, Hans, 198
Locke, 322

log (nautical), 154
Lombards, 88
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Louis XII1, 208
X1V, 317, 375
XVI, 355

Luther, 90

. Magyars, 88

Manfred, 248

Marcellus, 63

Marie Antoinette, 355

mariners’ compass, 86

Mary (Queen), 94, 274

Maurice (Prince of Orange), 208

Maya civilization, 5, 6

Mazarin, 221

Meander (River), 32

Medici, 199

Mediterranean, 150

Middle Ages, 47, 63, 84, 85, 90,
156, 163, 384

Milan, 88 '

Miletus, 32

Mint (London), 322, 323

Mohammed, 24 o\

Moors (see “Arabs,” Math. In-
dex) X {{

Moulton, Lord, 170>

A

Nana Ghat,/22~

Nasik, 23{ "

Natal 86,

Neuilly, 229

New World, 86, 87, 156

Nicaea, 113
Nile, 13, 31, 32

Oldenburg, Henry, 279, 313
Ozford University, 90, 94, 252,
275, 350

Padua, 88, 110, 195
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palimpsest, 14

paper, manufacture of, 12, 87
papyrus, 12, 13

paradox, 236

parchment, 12, 14

Paris, 208, 221, 226, 230
Parmenides, 110, 235

Pascal’s amulet, 230 A
Pavia, 88 \ \J)
Pensées (Pascal), 230\
Pepys, 285 N
Peter the Great, 341,735
Pisa, 84, 194, 195,499"
Plague of Londoi, 285

Plate (see M@ Index)
Pliny, 37 { €

Plutarc, 37, 57, 58, 114
Poiton, 101

Poting, 22

Pape (Alexander), 275
_{\ Port Roya! (monastery), 230

(nunnery), 227
Prague, 203, 208
printing, 12, 87
Protestants, 171, 374
Provincial Letiers (Pascal), 230
Ptolemy (King}, 46, 49, 52
Punic Wars, 63
Pyramids, 31, 37, 107

Renaissance, 85-88, 155, 384

Richelieu, 208, 226

Romans, 4, 8-11, 14-21, 29, 58,
63, 157

Rope-stretcher  (see  “harpe-
donapta,” Math. Index)

Rostock University, 202

Royal Society of London, 224,
253, 278, 279, 284, 311,
313-315, 318-320, 354, 375
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Rudealph IT, 203
Russia, 117

Sagres, 86, 87

St. Andrews, 91, 170, 171
3t. Paul’s Cathedral, 275
Samos, 37

Serapls, 146

Seven Years” War (1756—1!63),

351
Shakespeare, 39, 47, 83, 111
Sicily, 55, 248
Sorbonne, 230
Spain, 24
Spanish Armada, 171
Sparta, 44
Spinoza, 341
Steele, 321
stylus, 15
sundial (see Math. Index)
sunspots, 200 )
Swift, 90, 321 N
Syene 50—52 A
Syracuse, 56, 58, 59; 62, 63
Thirty Yearsl %ﬁr 208
Thomas Aquinas, 249
Toledo, 4287
Touljf.s\ 206

No/
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Trinity College, Cambridge,
274, 282-285, 310, 312, 316

Tithingen, 202

Turks, 85, 171, 172

Tzetzes, 63

Uraniburg, 203 O
Urban IV (Pope), 248

Vasco da Gama., 86 \
Venice, 47, 199
VlSlgoths 24
Vlt:ruv1us,§Q, 109
Volta, 38\~

Voltz.'(e., 316, 348, 351

Wéstmlnster Abbey, 323

’Woo]sthorpe, 276, 280, 285, 310

“Wordsworth, 275, 276, 385

Wren, Christopher, 275 {(see alsa
Math. Index)

Wiirtenburg, Duke of, 203

Yale “College,” 321
Ypres, 226
Yucatan, 6

Zeno (see Math. Index)
zodiac, 71
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abacus, 15-21

ahscissa, 211

absolute value, 372

acceleration, 196, 271, 334, 339

Acta eruditorum (Leibniz), 319,
342

-addition on abacus, 17-19

Adelard (see Athelhard}

Ahmes, 13, 65, 77, 78, 107, 125

~ Alexandria, 46, 49, 51-33, LY AN
79, 114, 119, 137,146

2

algebra (name), 82, 83

ol jabr wal muquabileh (al-
Khowarizmi), 83-84, 128

al-Khowarizmi, 23) 74, 75, 82-
84, 128,248/

Almagest (Prolemy), 119, 124,
128(146-149, 136

alogo§ (sec “irrational”)

amplitude, 273

. analysis (in general), 103, 104,
\J 181
(in geometry), 34

apalytic geometry (see ge-
ometry)

antilogarithm, 193

Antiphon, 60, 236

Apollonius, 41, §2-55, 212

a priori reasoning, 34-36

O\
N

Arabic numerals (seé Hindu-
Arabic) LV

Arabs, 24, 47, 74, 82-84, 127,
128, 143,'157, 158

arc, 113, 1182126, 152-154

Archimedes, 49, 55-64, 109,
4407 192, 194, 196, 232,

o 241-249, 267, 384

\area function, 260-205, 335-337

\Aristarchus, 109113, 163, 194

Aristotle (see Hist. Index)

arithmetic (modern), 76

Arithmetica (Diophantus), 79,
96, 223

Arithmetica Infinitorum (Wal-
lis), 253-267, 282

Arithmetica Logarithmica
(Briggs), 188190, 208

arithmetic progression (see pro-
gression}

arithmetiké (arithmetica), 60,
76, 1782

arithmos (symbol for unknown},
81

Ars  conjectandi (Jakok Ber-
noulli), 347

Ars magna (Cardan), 89,90, 368

Aryabhata, 124127

astronomical unit, 205
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Athelbard, 47

axis, 210, 219
(polar), 345

Babylonia, 33, 115, 120
Barrow, 280, 283, 284, 286, 289
291, 307, 310, 311
Berkeley (Bishop), 321, 322
Bernoulli, Danjel, 342, 347, 348,
350
James (Jakob), 342, 343, 346
John (Johann), 262, 278, 334,
344
Nicolas, 347
biltion, 4
binomial, 228, 229, 264, 318
brachistochrone, 277, 347
Brahe, Tycho, 202, 203
Briggs, 173, 180, 183, 184, 187
190, 193, 208, 284 oW
Biirgi, 192, 193

calculus, 16
differential, 239;'200-304, 319
infinitesimaly 239-339
integral, /62, 239-267, 304,

305, 331
of v{rgations, 354
sy{?nbolism, 307-310, 326-333
cé{endar, 114-118

«\Eantor, 238
 Cardan, 88-92, 100, 101, 195,

308
Cartesian cotirdinates, 370
Cavalieri, 206, 231, 232, 29,
241, 249-252
Cayley, Arthur, 382
chord, 113, 118-126
cipher, 24, 180
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circle, 54
circumference of, 6062
equation of, 214, 215, 264
great, 48, 137
small, 48, 137
“squaring” the, 45, 60, 61, 236
“cis,” 373 )
combinations, 228 N
common logarithms, ,18% 190
common measure, 42,7172, 224
complement, 144,460
complex number\369-379
component§i70
cone, 5356
conic séction, 53-56, 224
Consfructio (Napier), 176, 178~
R 51

tontinuity (continuous growth
1 or motion), 239, 240, 249

continuum, 249

Contributions {Cantor)},
239

codrdinates, rectangular, 210~
212

polar, 344, 345, 373-379

Copernican System, 110, 111,
147, 199, 203

Copernicus, 110, 111, 163, 166,
195, 204

cosecant, 165

cosine, 144, 143

cotangent, 160, 161

cube, 43, 45, 81

cycloid, 230, 231, 278

cylinder, 62

d’Alembert, 354, 361, 362
De Arte Combinatoria (Leibniz),
341

decimal fractions, 130, 179, 180
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decimal number-scale, 4

Dedekind, 238

deductive reasoning, 34-36

definite integral, 338

degree (angular), 120

de 'Hépital, 344, 347

de Moivre, 369, 374-379

De  Motibus Sielloe  Moartis
(Kepler), 204

De Motu Corporum (Newton),
314 :

derivative, 202-307, 326, 335

de Roberval, 221, 224

Desargues, 224

Descartes, 53, 95-97, 102, 206~
221, 222, 224, 226, 253, 282,
315, 341, 349, 364, 368, 370

Descriptio (Napier), 170, 176,
178, 180, 184, 185, 187, 188

Die Rothe Zahl (Burg), 193

differential coefficient, 332
digit, 8 o)
dihedral angle, 153¢\ "

Diophantus, 79482, 96, 98, 100,

223, 368 ) '
directed pumber, 98-101, 151,
184486, 210, 211

directrix, 219
Discourse . .

L, A (Descartes),
209 .

Jdiscrete numbers, 381

Disquisitiones Arithmeticae N
{Gauss), 380

dodecahedron, 42

duodecimal number—sca.le, 4

Ax, Ay (defined), 269, 308

dx, dy (defined), 319, 325-331
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dynamics, 194-198, 201

e, 352
earth, circumference of, 49-52
movements of, 109-111, 139,
140
shape of, 41, 48 .
“earth measurement,” 32, 33
Egyptian mathematics, 13, 14,
20, 31-33, 37, 43, 65, 66, 80}~ )
107, 108, 115, 125 L

| Elements (Eudlid}, 45-48;67, 90,

128, 137, 224, 282,283
eleven (derivation), 4
llipse, 41, SE262)109, 204, 240
equation. Q{,,Q 15-217

stoquals” sign, 93-95

~cquation [explanation of], 105,
differential calculus (see’ cal-§% 106
culus) N\

biquadratic, 80
cubic, 80, 8%
indeterminate, 80
quadratic, 67, 80
{See also, 65, 77-179,92-96, 93,
100, 376}
equinox, 116
Eratosthenes, 49-52, 137, 244
Fuclid, 15, 44, 45-49, 62, 67,90,
113, 122, 137,197, 210, 224,
342, 382
Fudoxus, 49, 74

| Euler, 129, 220, 267, 344, 348~

354, 369
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Fermat, 79, 222, 223, 227, 267,
286-288, 305-307

Fibonacci, 84, 267, 368

Fincke, Thomas, 158, 163

fluxional calculus, 291, 306, 307,
318, 334

focus (-i}, 204, 219

Fontana, NICCOIO (“Tartaglia”),
88-90

formula, 69, 97, 103, 136, 142,
147-—149

function, 167, 168, 309

“fundamental theorem® of al-
gebra, 376

Galileo, 111, 194-201
Gauss, 379-382
geometric progression (see pro-

gression) o

=

geometry [Ch. TI] R
analytic, 53, 210-220 o\
projective, 224

Gherado of Cremons} 75, 83,

128, 129, 146\~
gnoruon, 115 (§e@~ also ““sun-
dial”y A\
gravitation (29, 201, 285, 286,
361, .Qsee also Prmczpw)
great cirele (see circle)
Greel humber-symbols, 7

Grzenwxch 139, 140, 151

~ “Gregorian calendar, 117
\J Grounde of Artes (Recorde), 78

Gunter, 145, 161, 190, 191

half-chord, 125-129
Halley, 279, 313-315, 354

Harmonices Mundi {Kepler);
204
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harpedenapta  (“rope-
stretcher™), 30, 31

“hau,” 65

Heath, Sir Thomas, 62, 80, 113,
233, 244

Hebrew number-symbols, 7

Henry (Prince), 86, 140

Hindu-Arabic number symbo]s,
22-26, B4 O\

Hindu mathemat.lcs, \22-26, 74,
124-127, 1574

Hipparchus, 109 T13-124, 147

Hooke, 311,813

Huygens, ~f9 ,
313817

Hypaﬂ}ia 119

hyperbola, 41, 55-57

231, 267, 312,

;hyperbale 41

" 4, 352, 365-379

icosahedron, 42

identity, 67

“imaginary” number, 96, 364-
379

In Ariem Analyticam Isagoge
{Vieta), 103

incommensurable number, 223

indivisibles, 206, 231, 249-252,
325

infinitesimal calculus (see cal-
culus)

infinitesimals, 206, 236, 321

infinity, 45, 103, 206, 232-239,
243

instantaneous rate, 273, 293,
295, 297, 334, 335, 339

integral calculus (see calculus)

Irrational number, 67, 72-76,
233-235, 369

isoperimetrical, 342, 344
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Julian calendar, 116, 117 Méchanique Celeste (Laplace),
Karpinski, L. C., 84 M 361hm
Kepler, 201206, 232, 240, 285, Menctoue, 126, 137, 136, 143
knot, 134 meridia, 139, 149, 150 (see also
knott “longitude”)

notted rope, 30, 39 | Method, The (Archimedes), 244
Lagrange, 267, 353-360 247
Lambert, 267 Method of Fluxiens (Newton)y,

306 )
metric system, 356-359 | ™
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Wallis, 102, 232, 250, 253-267,
273, 282, 369

Whetstone of witte (Recorde)}, 94

Whitehead, Alfred, 63, 239

Wren, Christopher, 275, 313
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Wright, Edward, 184, 187, 188,
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zenith, 141

zenith distance, 142
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